Diktat Teori Musik 2 - Staff Site Universitas Negeri Yogyakarta

Document technical information

Format pdf
Size 1.7 MB
First found May 22, 2018

Document content analysis

Category Also themed
Language
English
Type
not defined
Concepts
no text concepts found

Persons

Johann Sebastian Bach
Johann Sebastian Bach

wikipedia, lookup

Erik Christensen
Erik Christensen

wikipedia, lookup

Stevie Wonder
Stevie Wonder

wikipedia, lookup

Pema Chödrön
Pema Chödrön

wikipedia, lookup

Francisco de Salinas
Francisco de Salinas

wikipedia, lookup

Paul Erlich
Paul Erlich

wikipedia, lookup

Organizations

Places

Transcript

JURUSAN PENDIDIKAN SENI MUSIK
HANNA SRI MUDJILAH
e-mail: [email protected]
FAKULTAS BAHASA DAN SENI
UNIVERSITAS NEGERI YOGYAKARTA
2010
HALAMAN PENGESAHAN
DIKTAT:
TEORI MUSIK 2
Oleh:
Hanna Sri Mudjilah
Disahkan oleh:
Ketua Jurusan Pendidikan Seni Musik,
Dra. Heni Kusumawati, M.Pd
NIP. 19671126 199203 2 001
ii
KATA PENGANTAR
Teori Musik 2 merupakan lanjutan dari Teori Musik 1 yang harus
ditempuh setiap mahasiswa Program Studi Pendidikan Seni Musik, FBS UNY.
Mata kuliah dilaksanakan pada semester 2, merupakan mata kuliah wajib tempuh
dan prasyarat bagi mata kuliah Harmoni 1. Hal ini dimaksudkan, jika seorang
mahasiswa belum lulus dalam mata kuliah Teori Musik 2, maka pada semester 3
tidak dapat menempuh mata kuliah Harmoni 1.
Diktat Teori Musik 2 ini diharapkan dapat menambah sumber bacaan
yang membahas tentang teori musik tingkat lanjut. Setelah mempelajari Teori
Musik 2 ini, diharapkan mahasiswa dapat lebih menguasai dan memahami teori
musik.
Pembahasan dalam Teori Musik 2, diawali dengan pengulangan
beberapa materi pada Teori Musik Dasar, untuk mengingatkan kembali materi
yang telah dikuasai pada semester 1, sehingga pembahasan pada materi Teori
Musik 2 dapat saling terkait. Pembahasan Teori Musik 2, lebih ditekankan pada
pembahasan tentang dasar-dasar penggunaan akor (harmoni), dan pengenalan
penggunaan teknologi informasi melalui searching beberapa materi yang dapat
dilakukan secara on-line.
Diktat Teori Musik 2 ini disusun dengan susunan sebagai berikut : Bab I
Interval, Modus, dan Tangganada, Bab II Akor, Bab III Menulis Melodi, Bab IV
Tekstur Vokal 4 Suara (SATB), Bab V Suplemen. Suplemen pada bab terakhir ini
merupakan pengayaan yang harus dilakukan oleh mahasiswa dengan mencari dan
mendalami beberapa materi teori musik melalui internet maupun secara on-line.
iii
DAFTAR ISI
HALAMAN JUDUL
i
HALAMAN PENGESAHAN
ii
KATA PENGANTAR
iii
DAFTAR ISI
iv
DAFTAR GAMBAR
vi
DAFTAR TABEL
viii
BAB I
INTERVAL, MODUS, dan TANGGANADA _______________
1
A. Interval _______________________________________
1
B. Modus ________________________________________
6
C. Tangganada (Scale) ______________________________ 8
D. Sistem Penalaan dan Temperament _________________
BAB II
BAB III
9
Pendalaman Materi ______________________________
14
AKOR ______________________________________________
15
A. Konsonan dan Disonan ___________________________
15
B. Triad _________________________________________
16
C. Akor Seventh dan Superimposed Thirds _____________
17
D. Simbol Akor ___________________________________
19
Pendalaman Materi ______________________________
28
MENULIS MELODI __________________________________
30
A. Bentuk Strophic Kecil ____________________________ 30
B. Simetri dan Balance _____________________________
32
C. Struktur Metrik _________________________________
32
D. Melodic Cadences _______________________________
33
E. The Final Cadence ______________________________
34
F. Interior Cadence ________________________________
35
G. Extensions and Irregularities _______________________ 37
Pendalaman Materi ______________________________
iv
39
BAB IV
BAB V
TEKSTUR VOKAL 4 SUARA (SATB) ___________________
40
A. Range Suara ___________________________________
40
B. Pen-dobel-an ___________________________________
41
C. Spasi, Jarak, Gerak, dan Persilangan Suara ___________
42
D. Inversi Akor ___________________________________
44
E. Larangan dalam penulisan empat suara ______________
45
Pendalaman Materi _____________________________
49
SUPLEMEN _________________________________________
50
A. Other Clefs ____________________________________
50
B. Time Signature _________________________________
51
C. Triplet ________________________________________
52
D. Triads & Chords ________________________________
53
E. Harmonic Cadence ______________________________
57
F. Other Scales ___________________________________
64
G. Altered Chords _________________________________
66
H. Musical Analysis ________________________________ 69
I. Harmonic or Overtone Series ______________________
72
J. Pythagorean Series ______________________________
75
K. Meantone Scale _________________________________
77
L. Equal Temperament _____________________________
79
M. Just Intonation __________________________________ 80
N. Pythagorean ____________________________________ 81
O. Timbre/Tone Colour _____________________________
82
Pendalaman Materi ______________________________
85
DAFTAR PUSTAKA
v
DAFTAR GAMBAR
Halaman
Gambar 1
Interval _____________________________________
1
Gambar 2
Median-sub Median, Dominan-sub Dominan _______
4
Gambar 3
Modus ______________________________________
6
Gambar 4
Modus dengan Tonika C _______________________
7
Gambar 5
Tonika Modus ________________________________
7
Gambar 6
Whole-Tone Scales ____________________________
8
Gambar 7
Augmented Chords ____________________________
8
Gambar 8
Pentatonic Scales _____________________________
9
Gambar 9
Other Scales _________________________________
9
Gambar 10-11
Pythagorean Scales ____________________________
10
Gambar 12
Overtone Series ______________________________
11
Gambar 13
Just Intonation _______________________________
11
Gambar 14
Pythagorean-Just Intonation _____________________
11
Gambar 15
Mean-Tone Temperament ______________________
12
Gambar 16
Sistem Penalaan ______________________________
13
Gambar 17
Overtone Series ______________________________
15
Gambar 18
Consonance-Dissonance ________________________
16
Gambar 19
Superimposed Thirds __________________________
16
Gambar 20
Kualitas Akor ________________________________
16
Gambar 21
Triad _______________________________________
17
Gambar 22
Inverse Triads ________________________________
17
Gambar 23
Suspensi-Passing Tones ________________________
18
Gambar 24
Seventh Chords _______________________________
18
th
th
th
Gambar 25-26
9 , 11 , 13 Chords ___________________________
19
Gambar 27
Akor dalam Tangganada Mayor __________________
19
Gambar 28
Akor dalam Tangganada minor __________________
20
Gambar 29-30
Simbol Akor _________________________________
20
Gambar 31
Akor Seventh dalam Tn. Mayor __________________
21
vi
Gambar 32
Akor Seventh dalam Tn.Minor ___________________
21
Gambar 33-36
Alterasi pada Akor ____________________________
21-23
Gambar 37-38
Figure Bass __________________________________
23-24
Gambar 39-47
Simbol Akor dalam Musik Populer dan Jazz________
25-27
Gambar 48-50
Kalimat, Phrase, Periode _______________________
31-32
Gambar 51-54
Struktur Metrik _______________________________
33
Gambar 55-57
The Final Cadence ____________________________
34-35
Gambar 58-59
Ritmik Metrik ________________________________
36-37
Gambar 60-62
Extensions and Irregularities ____________________
37-38
Gambar 63
Range SATB _________________________________
40
Gambar 64-66
Pen-double-an ________________________________
41-42
Gambar 67-69
Posisi Akor __________________________________
42-43
Gambar 70
Overlapping _________________________________
44
Gambar 71-72
Akor Pembalikan _____________________________
44-45
Gambar 73-76
Penulisan Empat Suara _________________________
45-46
Gambar 77
Range Suara Vokal ____________________________
47
Gambar 78
Triplet ______________________________________
52
Gambar 79-80
Perfect Cadence ______________________________
59
Gambar 81
Plagal Cadence _______________________________
61
Gambar 82
Imperfect Cadence ____________________________
62
Gambar 83
Interrupted Cadence ___________________________
63
Gambar 84
Six-Four Cadence _____________________________
63
Gambar 85
Feminine Endings _____________________________
64
Gambar 86
Blues Scales _________________________________
65
Gambar 87
Blues Style __________________________________
66
Gambar 88
Altered Chords _______________________________
67-68
Gambar 89
Neapolitan Sixth Chords _______________________
69
Gambar 90
Overtone Series ______________________________
74
Gambar 91
Pythagorean Series ____________________________
76
vii
DAFTAR TABEL
Halaman
Tabel 1
Interval _____________________________________
2
Tabel 2
Akor Pembalikan _____________________________
47
Tabel 3
Akor Seventh Pembalikan ______________________
48
Tabel 4
Kunci Oktaf _________________________________
50
Tabel 5
Tanda Birama ________________________________
51
Tabel 6
Other Lets ___________________________________
53
Tabel 7
Non-Harmonic Notes __________________________
71-72
Tabel 8
Pythagorean Intervals __________________________
76-77
viii
BAB I
INTERVAL, MODUS, DAN TANGGANADA
Pengertian tentang Interval telah dijelaskan pada Teori Musik 1. Akan tetapi pada
Teori Musik 2, kembali akan dijelaskan tentang Interval secara singkat, agar penjelasan
materi yang akan dibahas selanjutnya mendapatkan gambaran yang lebih jelas. Bab ini
terdiri dari 4 subbab, yaitu Interval, Modus, Tangganada, dan Sistem Penalaan.
A.
Interval
1.
Interval Sederhana (Simple Interval)
Interval adalah “jarak” antara nada satu ke nada yang lain. Setiap interval
diberikan nama yang mengandung arti kuantitas dan kualitas. Dalam sebuah
tangganada ada 7 (tujuh) nada yang masing-masing mempunyai nama kuantitas
interval, sebagai berikut :
Gambar 1. Interval
c’ – c’ : prime
c’ – g’ : kuin
c’ – d’ : secondo
c’ – a’ : sekst
c’ – e’ : terts
c’ – b’ : septim
c’ – f‘ : kuart
c’ – c” : oktaf
Sedangkan nama kualitas interval dibagi ke dalam 2 (dua) kelompok dasar, yaitu:
Interval Perfect (murni) :
- Interval Prime
(1)
- Interval Kuart
(4)
- Interval Kuin
- Interval Oktaf
Interval Mayor (besar) :
(5)
(8)
- Interval Secondo ( 2 )
- Interval Terts
(3)
- Interval Sekst
(6)
- Interval Septim ( 7 )
Teori Musik 2
Page 1
Untuk lebih jelasnya, berikut ini akan disajikan dalam bentuk diagram sebagai berikut
Tabel 1. Interval
AUGMENTED
2 3
6 7
MAYOR
PERFECT
1 4
5 8
MINOR
DIMINISHED
Nama-nama kualitas
dan kuantitas
dari
suatu interval
biasa
ditulis
dengan
menggunakan simbol-simbol, sebagai berikut :
Prime
:
mayor (besar)
m
:
minor (kecil)
A
:
augmented (lebih)
d
:
diminished (kurang)
P
:
perfect (murni)
:
1
(1st)
nd
Kuin
:
5
(5th)
Secondo
:
2
(2 )
Sekst
:
6
(6th)
Terts
:
3
(3rd)
Septim
:
7
(7th)
Oktaf
:
8
(8th)
Kuart
Contoh :
M
:
4
th
(4 )
P 4th = P 4 : Kuart perfect
= kuart murni
M 2nd = M 2 : Secondo mayor = sekondo besar, dsb.
Cara memberikan nama-nama pada suatu interval, adalah :
a.
Pertama-tama lihat nada yang terletak di bawah, dan tentukan nada tersebut
sebagai tonika.
Teori Musik 2
Page 2
b.
Anggaplah interval tersebut terdapat dalam tangganada dengan tonika adalah
nada bawah tersebut.
c.
Jika nada atas merupakan salah satu nada yang terdapat dalam tangganada
tersebut, maka interval itu adalah interval dasar, yang belum mengalami
perubahan. Akan tetapi jika nada atas tersebut bukan salah satu nada dari
nada-nada dalam tangganada, maka nada tersebut sudah mengalami
perubahan. Perubahannya dapat berupa nada yang diperlebar ataupun
dipersempit. Sesudah mengetahui apakah nada atas diperlebar atau
dipersempit, maka dengan melihat pada tabel 1 di atas, sudah dapat
menentukan nama interval tersebut.
Contoh

d5
A5
P5
P4
M7
P5
d4
d6
:
A2
d5
A4
A3
d3
M7
m6
A5
Apabila interval Augmented diperlebar sebanyak 1 semitone, maka interval
tersebut akan menjadi interval double augmented. Sebaliknya, jika interval diminished
dipersempit sebanyak 1 semitone, maka interval tersebut akan menjadi interval double
diminished.
Teori Musik 2
Page 3
Contoh :
dd5
AA5
Pada nama tingkatan nada dalam tangganada, terdapat istilah “super”, berarti
“atas”, dan “sub-, berarti “bawah”. Hal ini dapat dipahami pada pengertian dominan
adalah interval kuin di atas tonika, sedangkan sub-dominan adalah interval kuin di
bawah tonika. Jadi, apabila nada C adalah tonika, maka nada dominan adalah nada
dengan interval kuin di atas tonika, yaitu G (dominan), dan nada sub-dominan adalah
nada dengan interval kuin di bawah tonika, yaitu nada F (sub-dominan). Demikian juga,
nada median adalah nada dengan interval terts di atas tonika, yaitu E (median), dan
nada sub-median adalah nada dengan interval terts di bawah tonika, yaitu A (submedian).
Sub-median
Tonika
Median
Dominan
Sub-dominan
Gambar 2.
2. Interval Pembalikan
Jika nada bawah dari sebuah interval diletakkan sebagai nada atas
(dinaikkan 1 oktaf), atau jika nada atas dari sebuah interval diletakkan sebagai nada
bawah (diturunkan 1 oktaf), maka interval tersebut dikatakan sebagai interval
pembalikan (invertion). Sehingga interval sekondo akan menjadi interval septim, interval
terts menjadi interval sekst, dan interval kuart akan menjadi interval kuin. Sedangkan
kualitas interval mayor akan menjadi interval minor, interval augmented akan menjadi
interval diminished, interval perfect akan tetap menjadi interval perfect, demikian
sebaliknya.
1 >< 8
Mayor
><
2 >< 7
Augmented
><
minor
diminished
3 >< 6
Perfect
><
Perfect
4 >< 5
Teori Musik 2
Page 4
Contoh :
m3
M7
m2
P5
P5
P4
P8
P1
A2 d7
m3
M6
M3
P1 P8
P4
A4 d5
3.
M6
M2 m7
m6
m2
M7
Interval Susun (Compound Interval)
Interval yang tidak lebih dari 1 oktaf, disebut dengan interval sederhana (simple
interval), dan interval yang lebih dari 1 oktaf, disebut interval susun (compound
interval). Nama kualitas interval dalam interval susun, sama dengan interval sederhana
dengan menurunkan nada atas 1 oktaf ke bawah. Seperti contoh berikut, interval
sepuluh (10th) memiliki kualitas sama dengan interval terts (3rd), demikian juga interval
sebelas (11th) memiliki kualitas sama dengan interval kuart (4th).
Contoh :
M10
Teori Musik 2
A11
P12
Page 5
Tritonus (Tritone)
Tritonus disusun oleh tiga buah whole-tone (enam semitone), satu-satunya
interval yang jika dibalik akan tetap sebagai interval yang sama. Sebagai contoh dari
nada c – fis, dan fis – c’, keduanya disebut interval tritonus, seperti berikut:
B.
Modus
Pada abad pertengahan, musik sering disusun dengan langkah (step) dan
setengah langkah (half-step), lain dari jarak dalam tangganada mayor maupun minor.
Pola tangganada awal ini disebut dengan Modes (modus). Sejak abad XVI, Greater
Modal System, termasuk tujuh prinsip modus (disebut Authentic) dan tujuh bentuk
sekunder (disebut Plagal atau hypo modes). Bentuk-bentuk plagal dari modus, dengan
akhir yang sama, atau nada kunci, seperti bentuk-bentuk authentic, menggunakan range
yang berbeda; karena range bukan lagi suatu pertimbangan dalam musik modern.
Pembahasan akan dibatasi pada modus authentic (authentic modes). Di bawah ini
beberap modus yang digunakan pada periode romantik dan kontemporer, dan pola-pola
berikut perlu dikuasai oleh mahasiswa.
Ionian
Dorian
Phrygian
Lydian
Mixolydian
Aeolian
Locrian
Gambar 3. Modus
Modus Ionian dan Aeolian mirip dengan tangganada Mayor dan minor seperti
yang dikenal saat ini. Sedangkan Modus Locrian jarang digunakan karena akor tonika
yang terbentuk adalah akor diminished. Modus-modus yang sama dapat dibandingkan
Teori Musik 2
Page 6
dengan cara menyusun modus-modus tersebut dalam tonika sama, sehingga dapat
dengan jelas terlihat perbedaan pola dari jarak setengah (half-steps) dan jarak satu
(whole-steps).
Sebagai contoh, dari keenam modus dasar, dengan diawali nada C, akan terlihat
pola-pola sebagai berikut:
Gambar 4. Modus
Untuk menyusun modus-modus lain dengan nada kunci berbeda, dapat dilakukan
Aeolian
Lydian
Phrygian
Dorian
Ionian
sebagai berikut:
Mixolydian
dengan memahami pola-pola modus dalam tangganada C Mayor yang dikenal saat ini,
Gambar 5. Tonika Modus
Teori Musik 2
Page 7

Modus 3 , tonika pada nada as, maka modus tersebut adalah Lydian
Contoh:
Modus 2 , tonika pada nada fis, maka modus tersebut adalah Phrygian
C.
Tangganada (Scale)
Tangganada Mayor dan minor telah dibahas pada diktat TEORI MUSIK DASAR,
namun masih ada beberapa jenis tangganada lain yang akan dibahas pada diktat ini,
yaitu:
1.
Whole-Tone Scales
Pada musik romantik dan impresionistik, tangganada whole-tone kurang
digunakan. Tangganada ini terdiri dari 6 nada secara berturut-turut dengan
interval sekondo mayor (M2nd) atau whole-tone. Hanya ada dua tangganada
whole-tone yang berbeda dalam sistem 12 nada, yaitu:
Gambar 6. Whole-tone Scales
Oleh karena masing-masing nada berjarak sama, maka akan terbentuk triad
augmented dan akor-akor empat nada simetris, yang tidak tentu sehingga
menyebabkan monoton. Hal ini akibat dari kurang bervariasinya akor-akor.
Gambar 7. Augmented Chords
2.
Pentatonik Scales
Kadang-kadang musik budaya Timur menggunakan pentatonic, atau five-tone
scale, yang terdiri dari whole steps dan interval minor terts, tanpa langkah
setengah (half step). Tangganada pentatonik ini dapat disusun dengan cara
berbeda, tetapi papan hitam pada instrumen musik piano menunjukkan pola
yang jelas.
Teori Musik 2
Page 8
Gambar 8. Pentatonic Scales
3.
Other Scales
Komponis sering kali membuat tangganada sendiri yang disusun berbeda dari
yang telah biasa digunakan, kadangkala musik rakyat menggunakan
tangganada yang aneh atau bersifat idiomatik. Tangganada yang biasa
digunakan dan telah dijelaskan sebelum ini, yaitu tangganada dengan lima,
enam, tujuh, dan duabelas nada. Tangganada lain dapat dibuat dengan
menyusun delapan, sembilan, dan sepuluh nada. Komponis Mussorgky,
Debussy, Bartok, dan beberapa komponis kontemporer secara konsisten
membuat komposisinya menggunakan kombinasi tangganada yang jarang
digunakan. Beberapa kemungkinan susunan tangganada, sebagai berikut:
Gambar 9. Other Scales
D.
Sistem Penalaan dan Temperament
Dalam sejarah musik Eropa, system penghitungan interval dan tangganada
mengalami beberapa kali penyempurnaan. Penyempurnaan yang terpenting
diantaranya adalah:
1.
Pythagorean Scale
2.
Just Intonation
3.
Ean-tone Temperament
4.
Equal Temperament
Teori Musik 2
Page 9
Pythagorean Scale. Pada abad ke VI Sebelum Masehi, Pythagoras, seorang ahli
matematika dari Yunani, membuat eksperimen akustik dengan menggetarkan
sebuah dawai (senar) disebut dengan monochord. Dengan menggunakan dua
buah dawai (senar) Pythagoras bereksperimen, dimana satu dawai dipendekkan
1:2 (one half) secara terus menerus, sehingga menghasilkan nada 1 oktaf lebih
tinggi. Pada dawai yang lain dipendekkan dengan 2:3 (two thirds) secara terus
menerus sehingga menghasilkan nada kuin lebih tinggi.
dari monochord kedua tidak sama persis dengan
Setelah dilakukan sebanyak tujuh oktaf dan duabelas kuin, Pythagoras
menemukan bahwa nada B
nada C yang dihasilkan pada monochord pertama, tetapi ada sedikit perbedaan
lebih tinggi. Perbedaan kecil ini disebut dengan Pythagorean Comma.
Gambar 10. Pythagorean Scales
Nada-nada pada Pythagorean scale diperoleh dari interval kuin (3/2) seperti yang
ditemukan dalam overtone series. Tangganada diatonic dapat dihitung seperti
series dari kuin secara berturut-turut kuin atas dan kuin bawah, dari nada yang
ditentukan. Dengan menggunakan jumlah frekuensi 64 menunjuk pada nada C,
dan menghitung dengan 3/2 (atau 2/3), akan didapatkan:
Gambar 11. Pythagorean Scales
Teori Musik 2
Page 10
Perhitungan dengan Pythagorean akan menghasilkan nada terts sedikit lebih tinggi
dibanding dengan perhitungan dengan overtone series, sehingga membuat system
ini tidak digunakan untuk musik kontrapung.
Gambar 12. Overtone Series
Just Intonation. Sistem ini mencoba memperbaiki kekurangan pada Pythagorean
scale dengan melakukan perhitungan berdasar pada baik pure fifths (3/2) dan pure
thirds (5/4).
.
Gambar 13. Just Intonation
Interval yang menyusahkan di sini adalah kuin, dari D ke A, nada A menjadi sangat
rendah. Apabila perhitungan dengan Pythagorean scale diturunkan 1 oktaf, akan
dapat dibandingkan dengan perhitungan dari Just Intonation scale, sebagai berikut:
Gambar 14. Pythagorean – Just Intonation
Teori Musik 2
Page 11
Pemain instrumen gesek selalu mengatakan menggunakan just intonation, ketika
bermain nada dengan kruis (sharp) lebih tinggi, dan mol (flats) lebih rendah
dibanding dengan interval-interval equal-tempered. Bagaimanapun, ini suatu
kesimpulan yang salah, bahwa dalam just intonation karena, kruis sebenarnya lebih
rendah dibanding mol.
Hal tersebut di atas dan kesulitan-kesulitan lain yang disebabkan oleh system
penalaan murni menjadi ditinggalkan dan mendukung system tempered, dengan
cara comma dapat dibagi ke dalam beberapa interval untuk mengeliminir
permasalahan tersebut.
Mean-Tone Temperament. Sistem mean-tone dalam penalaan digunakan pada
abad XVI, khususnya untuk instrumen keyboard. Sistem ini berdasarkan pad aide
dari penalaan dengan terts, dengan menyusun interval kuin sebanyak empat kali,
sehingga sampai pada nada terts dari overtone series. Perbedaan dari kedua nada
ini disebut syntonic comma, yang kemudian didistribusikan dengan sama antara
keempat interval kuin, sehingga tiap-tiap kuin menjadi diturunkan dengan
seperempat (one quarter) dari syntonic comma. Whole tone tersebut adalah mean
dari mayor terts.
Gambar 15. Mean-Tone Temperament
Hal ini membuat sistem ini lebih sering digunakan untuk penalaan dengan pure
thirds dan mendekati pure fifths. Pada periode Renaissance dan awal periode
Baroque system ini bekerja dengan baik untuk musik keyboard yang tidak
menggunakan tanda mula lebih dari dua mol atau tiga kruis; selain tangganada
tersebut, introduksi dari mol ketiga (As) atau kruis keempat (Dis), dapat
menimbulkan permasalahan pada nada-nada enharmonis (As-Gis, Es-Dis, dll).
Sistem ini tidak cocok, karena nada-nada enharmonis akan berbeda mendekati
seperempat nada. Akhirnya system ini kemudian ditinggalkan kemudian sebagai
introduksi dari equal temperament.
Teori Musik 2
Page 12
Equal Temperament. Puncak perkembangan dari tonalitas, dari seven- to the
twelve-note scale, kemudian dipaksa memilih system penalaan yang dapat
mengakomodasi modulasi yang tak terbatas dan disamakan dari seluruh duabelas
nada. Hal ini memungkinkan dengan membagi oktaf menjadi duabelas semitones,
masing-masing mendekati tempered. Oktaf tetap hanya interval yang pure
acoustically, yaitu, kesepakatan dengan natural overtone series; kuin sedikit lebih
kecil dan terts lebih besar dari interval-interval natural.
Sistem mengukuran telah ditentukan dengan ukuran 1.200 cents untuk oktaf; satu
seminote sama dengan 100 cents. Komparasi secara grafik sebagai gambaran
terhadap perbandingan dari beberapa system penalaan, sebagai berikut:
Gambar 16. Sistem Penalaan
Teori Musik 2
Page 13
PENDALAMAN NATERI
Berikan tanda ‘X’ pada jawaban yang benar:
1.
2.
Tangganada di atas adalah:
a.
Tangganada whole-tone
b.
Tangganada Mayor
c.
Tangganada minor natural
d.
Tangganada Pentatonik
Manakah dari ritme-ritme di bawah ini dengan pengelompokkan yang benar?
a.
b.
c.
d.
Teori Musik 2
Page 14
BAB II
AKOR
Musik Barat menggunakan sonoritas dari nada-nada yang dibunyikan secara
bersama-sama, yang disebut dengan akor. Dua buah nada yang dibunyikan secara
bersama-sama disebut dengan Interval. Sedangkan jika ada tiga atau lebih nada
dibunyikan secara bersama-sama disebut dengan Akor.
A.
Konsonan dan Disonan
Pada harmoni, konsep dari konsonan dan disonan biasanya berkenaan dengan
stabilitas dari hubungan antara nada-nada, yaitu interval dan akor. Stabilitas ini biasanya
dimaknai sebagai “halus”, “harmonis”, atau “konsonan”, jika hubungan itu “tenang” atau
“agreeable”, atau “kasar”, “discordant”, atau “disonan”, ketika hubungan tersebut
membuat “tidak menyenangkan”, atau “disagreeable”. Hal ini dapat saja karena
pendapat secara subjektif dapat sangat bervariasi tergantung dari masing-masing
individu, bahkan juga dapat karena kultur dan jaman.
Musik Eropa Barat, berbeda dengan kultur Timur, memiliki konsep dasar stabilitas
dari norma harmonic natural, atau overtone series, yang dihasilkan dari getaran dawai
atau udara. Tekanan ini dari aspek harmonic yang tidak didapatkan dengan tingkat yang
sama dalam kultur Timur yang berorientasi pada melodi. Perasaan pada konsonan,
konkordans, atau persetujuan didapat dari enam nada terrendah dari overtone series
yang menghasilkan suatu triad mayor:
Gambar 17. Overtone Series
Nada-nada ini menghasilkan interval oktaf (P8), Kuint murni (P5), Kuart murni
(P4), Terts mayor (M3), dan Terts minor (m3). Interval oktaf, kuint, dan kuart, pada abad
pertengahan disebut sebagai konsonan, dan interval terts disebut disonan. Akan tetapi
sesudah tahun 1450, terjadi perkembangan terhadap harmoni terts, sehingga pada
Teori Musik 2
Page 15
“common-practice period” (1700-1900), karakter dari interval konsonan dan disonan
dapat dikelompokkan, sebagai berikut:
Gambar 18. Consonance-Dissonance
B.
Triad
Posisi Dasar dan Pembalikan
Enam nada pertama dalam overtone series menghasilkan sebuah suara komposit
yang disebut dengan Triad mayor. Dasar dari susunan ini menjadi pola dalam system
triadic harmony, yaitu, konstruksi dari akor-akor lebih yang disusun dengan
menambahkan nada berdasarkan superimposed thirds. Suara yang dihasilkan dari tiga
nada yang berbeda, yang disusun berdasarkan superimposed thirds disebut Triad; dan
akor-akor yang terdiri dari empat nada atau lebih diberi nama dengan tambahan interval
yang terbesar.
Gambar 19. Superimposed Thirds
Ada empat jenis dasar triad, yaitu Mayor, minor, diminished, dan Augmented.
Gambar 20. Kualitas Akor
Teori Musik 2
Page 16
Triad Mayor dan minor dikatakan sebagai triad konsonan, karena disusun oleh
interval terts mayor dan minor, dan kuint murni. Sedangkan triad diminished dan
augmented dikatakan triad disonan, karena disusun oleh interval kuint diminished dan
augmented, dan interval terts yang sama.
Triad terdiri dari Root (dasar), Third (terts), dan Fifth (kuint).
Gambar 21. Triad
Triad dalam posisi dasar, jika root (tonika) dari triad tersebut sebagai bass, atau
nada terendah. Triad dapat dibalik dengan menempatkan nada terendah menjadi satu
oktaf lebih tinggi. Pembalikan pertama dari suatu triad (akor), jika third (nada ketiga) dari
tonika sebagai bass, atau nada terendah. Pembalikan kedua suatu triad (akor), dimana
fifth (nada kelima) dari tonika sebagai bass, atau nada terendah.
Gambar 22. Inverse Triads
C.
Akor Seventh dan Superimposed Thirds
Musik kontrapung pada awalnya menggunakan triad-triad konsonan sebagai
dasar untuk materi harmoni. Sonoritas ini dihasilkan oleh nada-nada non-harmonik
disonan. Setelah tahun 1600, beberapa non-harmonik digunakan sebagai passing tones
dan suspens, yang mendahului sebelum bergabung sebagai anggota dari suatu akor.
Teori Musik 2
Page 17
Gambar 23. Suspensi – Passing tones
Ada beberapa type yang berbeda pada akor seventh, tergantung pada nada
keberapa yang menjadi nada alas (dasar) dari akor. Ada kemungkinan terdapat nama
dengan kualitas ganda (double), yang pertama menandakan kualitas dari terts, dan
kedua menandakan kualitas dari seventh. Jika ada dua nama yang sama, maka cukup
digunakan satu.
Gambar 24. Seventh Chords
Pada abad ke-19, komponis melanjutkan dengan menambahkan ke atas nadanada dengan superimposed thirds; hal ini menghasilkan akor sembilan (ninth chord),
dan pada akhir periode romantic, akor sebelas dan tiga belas: eleventh chord dan
thirteenth chord. Seperti halnya dengan akor seventh, maka pada akor eleventh dan
thirteenth juga terdapat beberapa type. Tidak ada system yang ditentukan secara
universal untuk memberi symbol pada akor-akor tersebut, tetapi akor-akor tersebut lebih
sering digunakan pada tingkat V, II, dan I. Sangat dimungkinkan untuk menambahkan
tanda aksidental pada nada-nada yang menjadi anggota akor, seperti contoh berikut:
Teori Musik 2
Page 18
Gambar 25. 9th Chords, 11th Chords, 13th Chords
Apabila akor-akor besar ini digunakan untuk piano atau musik orchestra, maka hal
ini mungkin untuk memasukkan seluruh unsur-unsur dalam akor tersebut. Akan tetapi
apabila digunakan untuk suara manusia (SATB), maka ada beberapa nada yang kurang
penting harus dihilangkan. Pada akor-akor besar ini biasanya digunakan pada posisi
dasar, sangat kurang digunakan pada posisi balikan. Untuk empat suara, biasanya
dituliskan seperti berikut:
Gambar 26.
D.
Simbol Akor
Pada awal abad ke-19, teori-teori German mulai menggunakan angka romawi
sebagai symbol harmoni fungsional, yaitu tonalitas konvensional, fungsi dari akor tonika
atau dominan yang diberi symbol dengan I atau V.
Ada dua system penulisan, pertama, menggunakan angka romawi besar, untuk seluruh
tingkatan akor, dalam tangganada mayor maupun minor.
Gambar 27. Akor-akor dalam Tangganada Mayor
Teori Musik 2
Page 19
Gambar 28. Akor-akor dalam Tangganada minor
Sistem penulisan yang lain, yaitu untuk masing-masing kualitas yang berbeda
menggunakan symbol yang berbeda. Seperti berikut:
akor mayor
angka romawi besar,
akor minor
angka romawi kecil,
akor diminished
angka romawi kecil dengan lingkaran kecil di atas,
akor augmented
angka romawi besar dengan tanda + di atas
Gambar 29. Simbol Akor
Gambar 30. Simbol Akor
Sistem penulisan yang terakhir ini tidak dianjurkan walaupun masih ada beberapa
buku-buku teori yang menggunakannya. Jika akor-akor masih dalam akor sederhana,
system penulisan ini masih mampu. Akan tetapi apabila digunakan untuk akor-akor yang
menggunakan tanda-tanda kromatik (alterasi), seperti pada akor seventh dan ninth,
maka system ini sudah tidak mampu lagi.
Jika tangganada yang digunakan akan dituliskan dalam hubungannya sebagai tonika,
maka tangganada tersebut dituliskan pada awal. Tangganada mayor dituliskan dengan
huruf besar dan tangganada minor dituliskan dengan huruf kecil, tanpa menuliskan
kembali ‘mayor’ ataupun ‘minor’.
Teori Musik 2
Page 20
C = Tangganada C mayor


c
B
f
= Tangganada C minor
= Tangganada Bes mayor
= Tangganada fis minor
Tambahan angka ‘7’ pada kanan atas dari angka romawi menunjukkan diatonik
interval dari akor diatonik. Simbolisasi ini berlaku juga untuk akor ninth, eleventh, dan
thirteenth.
Gambar 31. Akor Seventh dalam Tangganada Mayor
Gambar 32. Akor Seventh dalam Tangganada minor
Alterasi dari third, fifth, atau seventh pada akor posisi dasar, ditulis:
Gambar 33.
Teori Musik 2
Page 21
Jika alas (dasar) dari posisi dasar diberi alterasi, maka ditulis dengan memberikan
tanda aksidental (alterasi) sebelum angka romawi.
Gambar 34.
Jika akor dalam posisi pembalikan pertama (1st invertion), figure yang sama
digunakan untuk figure bass yang ditambahkan pada angka romawi. Lihat notasi di
bawah ini, jika alas (dasar) dari akor diberi alterasi, tetapi akor dalam posisi pembalikan,
tanda aksidental tidak diletakkan sebelum angka romawi, seperti pada posisi dasar,
melainkan dituliskan di depan figure bass.
Gambar 35.
Teori Musik 2
Page 22
Apabila nada bas dari akor pembalikan diberi alterasi dengan tanda aksidental, maka
ditulis:
Gambar 36.
Jika terdapat modulasi, maka akor yang sama (pivot chord), diberikan analisis
ganda, baik sebagai tangganada lama maupun tangganada baru, dan dituliskan sebagai
berikut:
Gambar 37. Figure Bass
Teori Musik 2
Page 23
Contoh lain dari karya J.S. Bach: Chorale no. 139
“Warum sollt’ ich mich den gramen”
Gambar 38. Figure Bass
Pada pivot chord [A], diberikan dua analisis, karena akor II dan VI, keduanya
berfungsi dalam tangganada masing-masing. Pada chromatic modulation [B], tidak
terdapat akor yang sama, karena akor pertama masing-masing berfungsi sebagai akor V
dalam tangganada C, sedangkan akor kedua adalah akor V dengan menaikkan nada
leadingtone dalam tangganada a minor. Akor pertama tidak dapat disebut sebagai akor
VII natural dari tangganada a minor, tetapi hal ini tidak berarti berlaku pada tangganada
minor. Juga, pada direct modulation [C] simbolisasi ganda dari akor pertama dihilangkan
pada awal dari phrase dalam tangganada baru dari G mayor. Akor pertama pada [C]
dapat disebut V natural dalam a minor, tetapi sekali lagi, ini lebih bersifat teoritis
dibanding dengan kekuatan fungsional.
Teori Musik 2
Page 24
Simbol Akor dalam Musik Populer dan Jazz
Lagu popular dan aransemen musik Jazz biasanya menggunakan notasi staff
dengan memberikan simbol-simbol akor yang diletakkan di atas melodi. Biasanya ditulis
untuk part gitar ataupun piano, atau berupa sheet-music untuk vocal dan piano.
Walaupun terdapat perbedaan pada masing-masing percetakan, akan tetapi simbolisasi
akor akan tidak bermasalah.
Nama-nama dengan huruf menunjukkan akor mayor pada posisi dasar, tidak tergantung
pada tangganada yang digunakan.
Gambar 39.
Akor minor, augmented, dan diminished ditulis dengan nama huruf dari akor dasar (root)
ditambah dengan singkatan (abbreviation):

M, mi, atau min

+ atau aug
: akor augmented

dim
: akor diminished seventh (akor diminished tidak digunakan)
: akor minor
Gambar 40.
Biasanya harmoni Jazz secara konsisten terdiri dari empat suara, yaitu, akor triad
ditambah dengan interval ke-enam dari akor tersebut. Mayor enam ditambahkan baik
pada akor mayor maupun minor, dan simbolisasi ditulis dengan menambahkan angka 6
(bukan figure dari pembalikan pertama atau 1st invertion).
Gambar 41.
Teori Musik 2
Page 25
Penambahan angka ‘7’ menunjukkan akor seventh minor pada seluruh akor .
Gambar 42.
Penambahan major seventh hanya untuk akor mayor, seperti berikut:
Gambar 43.
Tanda alterasi dari fifth pada akor seventh ditulis dengan tanda ‘+’ untuk lebih dan ‘-‘,

atau mol ( ) untuk kurang.
Gambar 44.
Akor-akor ninth baik sebagai tonika maupun dominan, dengan alterasi sebagai berikut:
Gambar 45.
Kadang-kadang eleventh atau thirteenth ditambahkan pada akor-akor dominan
seventh, dan dituliskan dengan figure seperti di bawah ini. Suara lain yang ditambahkan,
yang tidak berasal dari superimposed thirds, dituliskan sebagai tambahan nada.
Teori Musik 2
Page 26
Contoh:
Gambar 46.
Biasanya, nada bas untuk akor-akor jazz adalah alas dari akor; jika akor
tersebut dalam posisi balikan, ditulis dengan menambahkan pada simbol akor nada bas
tersebut. Akor pembalikan dapat juga dituliskan dengan menggunakan tanda ‘slash’
untuk menunjukkan nada bass sesudah tanda ‘slash’ (seperti symbol akor di bawah
notasi.
C7/E
Fm6/A
D9/A
Gambar 47.
Teori Musik 2
Page 27
PENDALAMAN MATERI
Berikan tanda ‘X’ pada jawaban yang benar:
1. Nada-nada di atas adalah bagian dari pasangan tangganada:
a.
B Mayor dan A Mayor
b.
A Mayor dan cis minor harmonis
c.
D Mayor dan fis minor natural
d.
E Mayor dan fis minor harmonis
2. Akor di atas adalah salah satu contoh dari
a.
Triad Mayor
b.
Triad minor
c.
Triad Augmented
d.
Triad diminished
Teori Musik 2
Page 28
3. Analisis yang benar dari akor di atas adalah:
a.
b.
c.
d.
4. Interval di atas adalah:
a.
M6
b.
A6
c.
d7
d.
A7
5. Apa nama kadens dan non-harmonic tone di atas?
a.
Imperfect authentic cadence dengan appoggiatura
b.
Perfect authentic cadence dengan escape tone
c.
Plagal cadence dengan passing tone
d.
Deceptive cadence dengan neighbouring tone
Teori Musik 2
Page 29
BAB III
MENULIS MELODI
Melodi dapat didefinisikan sebagai suatu rangkaian nada yang disusun; yaitu
melodi sebagai satu kesatuan rasa, termasuk konsep-konsep baik tinggi-rendah nada
(pitch), maupun ritme (rhythm) yang diaplikasikan dalam satu garis tunggal atau suara.
Prinsip dari bentuk melodi dapat dipelajari dari melodi-melodi pada vokal.
Melodi vokal, menurut Jones (1974: 101), memiliki tiga karakteristik, yang paling
tidak dimiliki oleh suara manusia, yaitu range, gerakan (motion), dan disusun dalam
bagian-bagian pendek. Selain itu, melodi vokal juga harus memperhatikan teks, katakata dan ide-ide yang akan menentukan juga bentuk melodi. Bentuk-bentuk melodi
disebut juga strophic forms, karena dibuat bagian per bagian seperti syair, atau baris
dalam puisi.
A. Bentuk Strophic Kecil. Dalam menyusun
bagian-bagian kalimat musik, dapat
dianalogkan dengan menyusun sebuah kalimat bahasa. Ada beberapa istilah dalam
menyusun sebuah kalimat melodi.
1. Motif (figure)
: ide melodi yang terkecil, terdiri dari beberapa nada dan
ritme
2. Bagian Phrase
: Bagian dari phrase yang dikembangkan dari motif
3. Phrase
: Suatu ide musik yang sudah lengkap (tetapi belum
selesai), yang diakhiri dengan sebuah kadens (biasanya
terdiri dari 4 birama atau bisa juga 2 birama)
4. Periode
: Gabungan dua buah phrase, yang diakhiri dengan kadens
yang kuat, dianalogkan dengan sebuah kalimat bahasa
(biasanya terdiri dari 16 birama)
5. Double Period
: Gabungan tiga atau lebih phrase.
Contoh lagu yang mempunyai bentuk kecil banyak dijumpai pada lagu-lagu daerah, lagu
anak-anak, hymns, dll. Sebagai contoh, lagu “Yankee Doodle” memiliki sebuah periode,
terdiri dari dua phrase sederhana, yang masing-masing dapat dibagi kedalam bagian
phrase.
Teori Musik 2
Page 30
Gambar 48.
Waltz in A flat dari Brahms, merupakan contoh bentuk satu periode dari literature
instrumental.
Gambar 49.
Teori Musik 2
Page 31
Lagu daerah Inggris “Greensleeves”, merupakan lagu double period karena terdiri dari
dua buah periode, yang masing-masing terdiri dari dua phrase, tetapi pada phrase
terakhir berbeda karena sebagai kadens.
Gambar 50.
B. Simetri dan Balance. Bagian-bagian kecil, seperti motif, bagian phrase, phrase,
maupun periode, semuanya terjadi karena saling berpasangan. Bagian-bagian tersebut
dalam susunannya harus memperhatikan beberapa estetika yang diperlukan sehingga
menjadi sebuah kalimat yang seimbang (balance) dengan kalimat kontrasnya. Secara
teori, dapat dianalogkan seperti sebuah pertanyaan dan jawaban sehingga menjadi
seimbang, seperti antecedent dan consequent. Phrase antecedent membuat sebuah
pertanyaan yang menuntut jawaban dengan phrase consequent.
C. Struktur Metrik. Phrase dapat diawali dan diakhiri dengan baik pada ketuk kuat
maupun ketuk lemah, atau bagian dari ketukan (beat). Beberapa teori berpendapat
bahwa jika diawali dan diakhiri dengan ketuk kuat disebut masculine (maskulin), dan
feminine (feminine) untuk ketuk lemah. Nada-nada lemah pada awal phrase disebut
nada-nada anacrusis, atau nada-nada pickup (nada pada birama gantung).
Berikut ini beberapa contoh kemungkinan variasi metrik.
Teori Musik 2
Page 32
1.
Kemungkinan variasi pada awal phrase:
a.
Accented-beginning on a strong beat:
Gambar 51.
b.
Unaccented (anacrusis)-beginning on a weak beat:
Gambar 52.
2.
Kemungkinan variasi pada akhir phrase:
a.
Accented-ending on a strong beat:
Gambar 53.
b.
Unaccented-ending on a weak beat:
Gambar 54.
D. Melodic Cadences. Awal musik monophonic vokal digunakan bagian akhir dimana
perjalanan melodi berakhir pada point of rest (bagian istirahat), biasanya alur melodi dari
nada-nada atas. Dari sinilah dikembangkan pola-pola bagian akhir, disebut kadens
(cadences, Latin: cadere; to fall). Bentuk modern dari kadens biasanya tergantung dari
harmoninya.
Teori Musik 2
Page 33
E. The Final Cadence. Biasanya tanpa kecuali, akhir dari phrase melodi menuju ke
nada tonika sebagai final point of rest, disebut dengan kadens perfect authentic atau full
cadence. Nada terakhir dari melodi tersebut dapat didekati dengan empat cara: dengan
melangkah dari atas, melangkah dari bawah, dengan melompat dari kuint ke bawah,
ataupun melompat kuart ke atas.
Berikut ini contoh akhir phrase dari empat buah hymns:
1.
“A Mighty Fortress Is Our God” by Luther
2.
“Now Thank We All Our God” by Crueger
3.
4.
“It Came upon the Midnight Clear” by Willis
“Bring a Touch, Jeannette, Isabella” – French Carol
Gambar 55.
Apabila nada akhir dari melodi merupakan anggota dari akor tonika (selain tonika), maka
disebut kadens autentik tak sempurna (imperfect authentic cadence). Akhir phrase dari
lagu “The First Noel” berakhir pada nada terts dari akor tonika.
Gambar 56.
Teori Musik 2
Page 34
Lebih banyak dijumpai lagu-lagu dengan melodi yang berakhir pada ketuk kuat. Apabila
terdapat melodi yang berakhir pada ketuk lemah, maka dapat digunakan feminine
ending untuk mengakhiri phrase. Contoh lagu dengan melodi yang berakhir pada ketuk
lemah terdapat pada lagu German “O Tannenbaum”
Gambar 57.
F. Interior Cadence. Kadens yang terjadi oleh karena arah melodi yang tidak seperti
sebuah akhir phrase. Phrase interior, terlihat pada tingkat yang berbeda dari akhir
phrase, tergantung pada komponis.
Tujuan dari kadens interior adalah untuk menghasilkan istirahat sementara pada akhir
dari phrase musikal. Berikut ini kemungkinan urutan suatu kadens interior:
1.
Perfect authentic (full) cadence in the tonic key
2.
Same – in a key other than the tonic
3.
Imperfect authentic cadence in the tonic key
4.
Same – in a key other than the tonic
5.
Deceptive cadence in the tonic key
6.
Same – in a key other than the tonic
7.
Half cadence in the tonic key
8.
Same – in a key other than the tonic
Tabel di atas dapat disimpulkan bahwa pada kadens-kadens authentic sempurna,
authentic tidak sempurna, dan deceptive, nada-nada melodi dapat berakhir pada not
dari akor tonik, yaitu nada-nada tingkat 1, 3, 5, atau 8; sedangkah untuk kadens
setengah,
nada-nada melodi merupakan nada-nada dari
akor dominan atau
subdominant, yaitu nada-nada tingkat 5, 7, 2, 4, atau 6.
Teori Musik 2
Page 35
Berikut ini beberapa ilustrasi dari formals point yang akan didiskusikan. Cobalah
kerjakan dengan mengikuti skema rhythmic-metric di bawah ini untuk satu periode.
Phrase pertama digunakan untuk satu kadens interior dari table di atas, dan phrase
kedua sebagai kadens final.
Gambar 58.
Awal melodi dan akhir melodi dapat dituliskan dalam beberapa kemungkinan, seperti
berikut:
Teori Musik 2
Page 36
Gambar 59.
G. Extensions and Irregularities. Phrase regular dengan empat birama merupakan
hal biasa untuk banyak melodi, baik untuk vokal maupun instrumental. Tetapi
kadangkala, untuk menghindari monoton, phrase yang lebih pendek atau yang lebih
panjang juga dapat digunakan. Latihan dengan phrase lima atau enam birama yang
dapat merupakan pengulangan, atau sekuens, dari figure atau bagian dari phrase.
Contoh:
Gambar 60.
Teori Musik 2
Page 37
Seperti pada extention di atas, phrase juga dapat dikembangkan pada akhir kalimat
dengan sebuah codetta kecil yang menunjukkan kadens akhir.
Gambar 61.
Sebaliknya phrase regular dapat juga dipendekkan dengan menghilangkan motif atau
bagian phrase.
Gambar 62.
Teori Musik 2
Page 38
PENDALAMAN MATERI
A.
1. Susun phrase tunggal empat birama dalam tangganada mayor, berakhir
dengan kadens authentic sempurna.
2. Susun phrase tunggal empat birama dalam tangganada minor, berakhir
dengan kadens authentic sempurna.
B.
Susun phrase konsekuen yang sesuai dengan phrase anteseden yang
diberikan:
1..
2.
C.
1. Dalam tangganada mayor, susun sebuah periode dari dua phrase related
four-measure, phrase pertama berakhir dengan kadens authentic tak
sempurna, phrase kedua dengan kadens final
2. Dalam tangganada minor, susun sebuah periode dari dua phrase related
four-measure, phrase pertama berakhir dengan kadens setengah, phrase
kedua dengan kadens final.
D.
Menggunakan periode-periode pada C1 dan C2 di atas:
1. Dalam periode pertama, kembangkan salah satu phrase dengan sekuens
atau repetisi dari motif atau bagian phrase
2. Dalam
periode
kedua,
ringkaslah
salah
satu
phrase
dengan
menghilangkan atau memendekkan motif atau bagian phrase
E.
Susun periode ganda, panjang 16 birama, tangganada dan pola kadens dapat
dipilih bebas.
Teori Musik 2
Page 39
BAB IV
TEKSTUR VOKAL 4 SUARA (SATB)
Instruksi awal pada komposisi musik, kontrapung secara alami telah digunakan
dengan pasti. Pada periode Barok, dengan pergantian kombinasi harmoni vertikal, para
musisi mulai mempelajari progresi harmoni dimana beberapa bagian, atau baris, dibawa
ke depan secara terus menerus. Kemungkinan harmoni awal dipelajari dengan
konsentrasi merealisasikan bagian continuo pada instrumen keyboard. Ini menunjukkan
improvisasi atau menulis kembali pada tekstur keyboard dari bagian figure bass (disebut
juga thorough bass) . Hal ini menjadi jelas bahwa progresi dari tiap baris individual, atau
suara, dalam musik tidak dapat dengan mudah diikuti dalam akor dengan banyak suara
dari part clavir. Sehingga, sedikitnya sejak abad XVIII, format tradisional untuk belajar
harmoni menggunakan tekstur empat suara dari kuartet vokal, menggunakan part
sopran, alto, tenor, dan bass.
Pada awalnya ditulis dalam posisi terbuka (open score), yaitu, masing-masing
suara pada garis paranada terpisah, dan biasanya, dalam empat tanda kunci yang
berbeda. Saat ini ada kesepakatan, ditulis dengan tekstur empat suara (SATB) pada
dua garis paranada, menggunakan tanda kunci treble dan bass. Hal ini akan menjadi
lebih mudah dalam membaca progresi harmoni dalam akor dan masing-masing suara
individu. Akhirnya, pada waktu mempelajari musik instrumental, akan terlihat bagaimana
prinsip harmoni empat suara yang diaplikasikan pada keyboard atau dalam bentuk
ansambel.
A. Range Suara
Range suara manusia secara individual kecil, mendekati satu setengah oktaf.
Range suara sopran, alto, tenor dan bass dituliskan seperti berikut, dengan suara
sopran dan alto ditulis menggunakan tanda kunci treble, tenor dan bass menggunakan
tanda kunci bass. Untuk suara sopran dan tenor ditulis dengan tangkai ke atas, suara
alto dan bass ditulis dengan tangkai ke bawah, seperti berikut:
Gambar 63. Range SATB
Teori Musik 2
Page 40
B. Pen-double-an
Oleh karena harmoni pada dasarnya hanya terdiri dari 3 nada, maka untuk
menuliskan empat suara, harus ada satu nada yang didobel, bisa dengan nada yang
sama dari anggota pada harmoni tersebut, yaitu root, third, atau fifth akan dituliskan
lebih dari satu suara, baik pada oktaf yang sama atau oktaf yang berbeda.
Gambar 64. Pen-double-an
Pada berbagai kesempatan, biasanya untuk alasan kontrapungtal, beberapa nada
pada akor dapat didobel. Ada beberapa teori berbeda dalam memahami tentang
pendobelan tersebut; buku teks harmoni biasanya memberikan kepada mahasiswa
hukum-hulum sebagai berikut:
1.
Akor Mayor dalam posisi dasar: pendobelan secara berturut pada root, fifth,
third
2.
Akor minor dalam posisi dasar: pendobelan secara berturut pada root, third,
fifth
Beberapa buku lain mengatakan bahwa nada yang terbaik untuk didobel adalah
nada-nada pokok (I, IV, V), baik pada akor minor maupun mayor. Hal ini pada prinsipnya
sama dengan alasan hukum di atas.
Gambar 65.
Teori Musik 2
Page 41
Kenyataannya, pada akor-akor posisi dasar dengan root yang didobel, nada-nada yang
didobel tidak boleh pada suara yang sama, atau parallel oktaf akan terjadi.
Gambar 66.
C. Spasi, Jarak, Gerak, dan Persilangan Suara
Macam-macam spasi dihasilkan dari overtone series, interval besar dekat dengan
nada bawah dan interval kecil dekat dengan nada atas dari akor, akan memberikan
resonansi yang baik untuk harmoni triadic. Spasi dari tiga suara atas, ada dua
kemungkinan, yaitu close position, menunjukkan bahwa tiga suara atas merupakan
anggota dari akor, tanpa nada kosong; sedangkan open position dimaksudkan ada
beberapa anggota akor yang dihilangkan antara suara sopran dan alto, atau suara alto
dengan tenor.
Gambar 67. Posisi Akor
Teori Musik 2
Page 42
Gerak antara dua suara atau lebih, dapat berupa similar, contrary, atau oblique.
Gerakan yang terbaik adalah dengan gerak contrary atau oblique, walaupun, banyak
juga gerak similar disukai.
Gambar 68.
Pada penulisan empat suara, seringkali disukai nada bas bergerak contrary dengan
melodi atau suara atas, jarang sekali empat suara bergerak dalam arah yang sama. Ada
perkecualian, dimana seluruh suara bergerak dalam arah yang sama, seperti berikut ini:
Gambar 69.
Pada penulisan harmoni, suara yang saling bersilang sebaiknya dihindari. Sejak periode
awal kontrapungtal, suara-suara yang bersilang sudah biasa, karena adanya
pertolongan secara individual dari suara yang dipertahankan pada masing-masing
suara. Bach seringkali menggunakan suara silang, khususnya pada choral vokal, tetapi
ini membawa pada suatu komplikasi yang tidak biasa bahwa mahasiswa tidak
diperlengkapi untuk mengatasi sebelumnya.
Teori Musik 2
Page 43
Overlapping dari suara yang berdepatan juga tidak diperkenankan, kecuali pada
kasus di bawah ini:
Gambar 70. Overlapping
D. Inversi Akor (Akor Pembalikan)
Jika anggota dari suatu akor selain root berada pada suara bass, maka akor
tersebut dikatakan pembalikan. Pembalikan pertama (first invertion) dari suatu akor
memiliki nada terts di suara bass, pembalikan kedua (second invertion) dari suatu akor
memiliki nada kuint di suara bass. Pada akor seventh memiliki empat nada yang
berbeda, sehingga terdapat pembalikan ketiga (third invertion).
Gambar 71. Akor Pembalikan
Teori Musik 2
Page 44
Figur bass pada tiap-tiap akor dengan pembalikan dapat ditulis sebagai berikut:
Gambar 72.
E. Larangan dalam penulisan empat suara
Ada beberapa larangan dalam penulisan empat suara, atau sedikitnya perlu
dihindari, antara lain:
1.
Pada tekstur vokal empat suara, masing-masing suara sebaiknya menjaga
individualitas. Tidak ada dua suara yang bergerak dalam konsekutif unison,
oktaf, atau kuint (perfect consonances)
Gambar 73.
2.
Nada-nada melodi aktif, seperti leading tone, seventh dari akor seventh, atau
nada dengan tambahan alterasi, tidak boleh didobel.
Gambar 74.
Teori Musik 2
Page 45
3.
Suara-suara individual sebaiknya tidak melompat dalam
interval yang
canggung/kaku seperti interval secondo augmented (A2) dan kuart augmented
(A4). Pembalikan dari interval ini biasa digunakan ketika nada aktif diselesaikan
secara dengan wajar.
Gambar 75.
Secara umum, lompatan yang besar seperti seventh dan ninth sebaiknya dihindari
kecuali terdapat pada suara luar dan diikuti dengan gerakan yang berlawanan.
Gambar 76.
Suara-suara dalam sebaiknya bergerak dengan wajar/normal sehalus mungkin,
sebab, menahan nada-nada sederhana dan bergerak dengan melangkah atau
dengan lompatan pendek/kecil.
Beberapa hal penting pada bab ini dapat disimpulkan sebagai berikut:
1.
Latihan harmoni adalah menyusun suara sopran, alto, tenor, dan bass secara
berpasangan dengan dua paranada, menggunakan tanda kunci treble dan bass.
Teori Musik 2
Page 46
2.
Range suara masing-masing, adalah:
Gambar 77.
3.
Pada akor posisi dasar, tonika selalu didobel kecuali ada suatu gerakan lain
yang khusus.
4.
Pada posisi tertutup, terdapat interval kurang dari 1 oktaf antara suara sopran
dengan tenor; pada posisi terbuka, terdapat interval 1 oktaf atau lebih antara
suara sopran dengan tenor.
5.
Diantara dua suara atas yang berdekatan, interval seharusnya tidak lebih dari 1
oktaf, sedangkan suara bas terhadap tenor bebas.
6.
Antara dua suara, atau antara suara bass dengan suara-suara atas, gerakan
contrary dan oblique lebih dianjurkan.
7.
Suara-suara yang bersilangan (crossed parts) dilarang.
8.
Pembalikan (invertion) dari akor/triad:
Pembalikan untuk triad/akor:
Tabel 2. Akor Pembalikan
Teori Musik 2
Nama
Nada Bass
Root position
Root
1st inversion
Third
2nd inversion
Fifth
Figure
6
Page 47
Pembalikan untuk akor seventh:
Tabel 3. Akor Sevent Pembalikan
9.
Nama
Nada Bass
Figure
Root position
Root
7
1st inversion
Third
2nd inversion
Fifth
3rd inversion
Seventh
6
5
4
3
4
2
(2)
Unisono secara berturut-turut, oktaf, atau kuint antara dua suara yang bergerak
dilarang,
10. Nada melodi aktif tidak boleh didobel.
11. Lompatan melodi dari secondo augmented dan kuart augmented dilarang.
12. Suara-suara dalam bergerak melangkah dengan halus, menggunakan nadanada sederhana, bergerak melangkah atau dengan lompatan kecil.
13. Pembalikan kedua dari akor tidak boleh diselesaikan dengan melompat.
14. Nada-nada disonan harus diselesaikan dengan melangkah ke nada-nada
konsonan yang penting.
Teori Musik 2
Page 48
PENDALAMAN MATERI
A.
Tentukan pernyataan-pernyataan di bawah ini mana yang benar dan salah:
1.
Latihan-latihan harmoni adalah menuliskan suara sopran, alto, tenor, dan
bass pada empat paranada yang berbeda.
2.
Tidak diperbolehkan interval lebih dari satu oktaf antara suara-suara atas
yang berdekatan.
3.
Jarak antara suara bass dan tenor tidak penting.
4.
Pada akor/triad posisi dasar, root/tonika selalu didobel, kecuali terdapat
suatu gerakan lain yang khusus.
5.
Gerakan similar/sama secara umum lebih disukai adalah gerak contrary
atau oblique.
B.
Tuliskan pada paranada range suara dari sopran, alto, tenor, dan bass.
C.
Jawablah pertanyaan di bawah ini:
1.
Dalam kondisi apa dua suara boleh overlap?
2.
Dalam kondisi apa dua suara boleh silang (cross)?
3.
Figure bass apa yang tepat untuk akor pada pembalikan pertama?
4.
Figure bass apa yang tepat untuk akor seventh pada pembalikan
pertama?
D.
Temukan kesalahan-kesalahan pada contoh di bawah ini. (Dapat terjadi lebih
dari satu kesalahan pada tiap-tiap contoh):
Teori Musik 2
Page 49
BAB V
SUPLEMEN
Bab ini merupakan tambahan materi yang akan membahas kembali beberapa hal
penting, yang pernah dijelaskan pada bab-bab sebelum ini. Pembahasan pada bab ini
merupakan pendalaman dari beberapa materi teori music, yang dilengkapi dengan testes, sesuai dengan materi pembahasan. Adapun materi berikut ini merupakan hasil
pencarian dari music theory, yang selanjutya dapat di download oleh masing-masing
mahasiswa sebagai pengayaan.
Akhir dari bab ini, terdapat beberapa tes yang dapat dikerjakan oleh mahasiswa,
dan diharapkan mahasiswa juga dapat mencari beberapa materi di internet sesuai
dengan anjuran yang akan dijelaskan pada bagian akhir.
A. Octave Clefs
Even with the freedom to move C, G, and even F clefs around on the five line
stave, you will find occasions when the musical line in still too high or too low to fit neatly
onto the five line stave. A useful device that overcomes this problem is one that moves
the musical line up or down an octave. The music is read as though at one octave but
sounds either an octave higher or an octave lower than it is written. This can be done
with any of the three clef signs (the C, F and G), placed in any position of the stave. We
have illustrated some in the chart below.
Tabel 4. Kunci Oktaf
Octave up
G clef
Octave down
G clef
Vocal tenor clef
Octave down
double
treble clef
Octave up
F clef
Octave down
F clef
two octave
up G clef
two octave
up F clef
It should be mentioned that while the use of these kind of clef signs is ‘good practice’
many editions ignore the additional figure 8 or 15 and use the plain sign without the
figure which is then ‘understood’
Teori Musik 2
Page 50
B. Time Signature
The third score has a compound time signature. A performer would be confused
– should the piece be in two or in three. If the piece is to be played ‘three in a bar’ then it
should be notated in three, as it was in the first example.
We can list various time signatures as simple time signature or compound time
signature.
Tabel 5. Tanda Birama
Beats
per Bar
2
(double)
3 (triple)
Simple
Compound
Time
Beat
Time
Beat
Signature
Signature
2
6
minim (half note)
dotted minim (dotted half note)
2
4
2
6
dotted crotchet (dotted quarter
crotchet (quarter note)
4
8
note)
2
quaver
6
dotted quaver (dotted eighth note)
8
(eighth note)
16
3
9
minim (half note)
dotted minim (dotted half note)
2
4
3
crotchet
9
dotted crotchet (dotted quarter
4
(quarter note)
8
note)
3
quaver
9
dotted quaver (dotted eighth note)
8
(eighth note)
16
if a piece is so quick that the feeling is of one beat in a bar, then the triple meter (usually 3/2 or
3/8) is compound (i.e. may be divided into three)
4
12
minim (half note)
dotted minim (dotted half note)
2
4
4
12
dotted crotchet (dotted quarter
crotchet (quarter note)
4
8
note)
4
quaver
12
dotted quaver (dotted eighth note)
8
(eighth note)
16
Anacrucis
Taken from poetry, the term anacrusis refers to one or two unstressed syllables at
the beginning of a line that are unnecessary to the meter. In music, this is represented
by a short or 'incomplete' bar at the beginning of a piece generally, but not always,
matched by a short 'incomplete' bar at the end so that the total number of beats in the
first and last incomplete bars equals a full bar. We give an example below - the first
sounding beat is the weakest in a three beat bar, i.e. the third, while the second beat of
the piece is the first beat in the first full bar and is strong. Anacrusis is also called 'pickup' or 'up-beat'.
Teori Musik 2
Page 51
Syncopation
The position of notes in a bar show their relative rhythmic strengths. However,
occasionally, the rhythmic pattern wanted does not fit the rhythmic pattern shown by the
barring. One says that the rhythm is 'off the beat' or syncopated. Examples of this are
common in popular music including jazz, but it does occur in music of all ages. We have
given a good example of syncopation below. Note, in particular, the theme played by
pianist's right hand (the upper line of the piano part). The theme is 'off the beat' for much
of the time, i.e. it is syncopated. The 'effect' is notated using ties. A crucial feature of
syncopation is that there should be a strong sense of the beat 'off which' the theme is
being played. This is provided by the percussion and bass guitar lines. There is a
second type of syncopation, where the strong beat is replaced by a silence.
C.
Triplet
In music, the term irrational rhythm is usually applied to a rhythm in which an
unusual number of beats is superimposed on the predominating tempo. More precisely,
if n evenly-spaced beats are played in the time of m beats of the underlying tempo then
the rhythm is irrational if neither of n and m is divisible by the other. The use of the term
“irrational” in this context is quite different to the mathematical use of the term: indeed,
rhythms of this sort are, in the mathematical sense, rational, as their are precisely
defined by the ratio of beats played to beats in the underlying tempo.
One example is the triplet, used when in the context of a simple time signature one
wants to subdivide a beat into three. The triplet notation lets you to do this.
Gambar 78. Triplet
Other-lets
The division of notes into smaller notes using triplets and duplets can be
extended to irrefular groups of even larger number, known collectively as tuplets or
gruppo irregolare (Italian). Again there are ‘notational’ conventions for writing such
grouping and these are listed below. As with triplets the groupings can include rests and
notes of different value. The ‘convention’ tells us the total time value of the group as
written and as played.
Teori Musik 2
Page 52
Tabel 6. Other Lets
Irregular Divisions in Simple Time
1
2
3
3 notes are written in the time of 2 of the same note
example: 3 quavers (eighth notes) in the time of 2 quavers (eighth notes).
5, 6 and 7 notes are written in the time of 4 of the same note
example: 5 quavers (eighth notes) in the time of 4 quavers (eighth notes).
9, 10, 11, 13 and 15 notes are written in the time of 8 of the same note
example: 13 quavers (eighth notes) in the time of 8 quavers (eight notes).
Irregular Divisions in Compound Time
1
2 notes are written in the time of 3 of the same note
example: 2 quavers (eighth notes) in the time of 3 quavers (eighth notes).
4 notes are written in the time of 3 of the same note but also in the time of 3
beats of double the time value.
2
example: 4 quavers (eighth notes) in the time of 3 quavers (eighth notes);
but sometimes 4 semiquavers (sixteenth notes) in the tome of 3 quavers
(eighth notes).
The irregular division of compound time is rare and notational ‘conventions’ are fluid.
Simple time divition is much more common and this has given time for composers and
music publishers to follow and keep to a ser of ‘notational conventions’.
D.
Triads & chords
Concord & Discord
The distinction between what we would call music and what we would regard as
noise is a matter of personal taste. We might use words like concordant and
discordant to distinguish the acceptable from the unacceptable. Musical theorists
discussing harmony have a particular technical use for the words concord as applied to
chords or consonance as applied to intervals, as well as to discord as applied to
chords or dissonance as applied to intervals.
Most cultures employ 'tunes' or 'melodies' in their music but Western music is
particularly distinctive through its use of 'harmony' whether arising from the interweaving
of other musical lines around and about a 'melody line' (what we call 'counterpoint') or
through the support of a 'melody line' with a progression of 'chords', groups of notes
sounding simultaneously, groups made up of various musical intervals
Teori Musik 2
Page 53
Diatonic Triads
One question that has been asked about triads is 'what is the strict meaning of
diatonic triad?'
When, earlier, we discussed the difference between chromatic and diatonic notes we
pointed out that notes in the major and minor scales of a particular key note are diatonic
while those that do not appear in these scales are 'chromatic' (see lesson 11 - The
Diatonic Scale). So in the key of C, E natural (which appears in the C major scale) and
E flat (which appears in the C minor scale) are diatonic but E sharp (which appears in
none of the C scales) is chromatic.
A triad is a chord with three notes and three intervals, i.e. if the notes are named
X, Y and Z then the three intervals are (i) between X and Y, (ii) between X and Z and (iii)
between Y and Z. When written in its close root position, this means that the lowest note
is the root, the lowest and the middle notes are an interval of a third apart and the
middle to the highest notes are an interval of a third apart. The interval between the
lowest and the highest notes is a fifth. So, a triad, written in its close root position, is
formed from two thirds placed within a fifth.
The root functions as the key note when determining whether or not the other two
notes in the triad are diatonic or chromatic and therefore whether the triad is diatonic or
not. If the root is C and the triad is [C - E - G] or [C - E flat - G], then the triad is
diatonic, because E, E flat and G all appear in scales on C. The triads [C - E - G sharp]
and [C - E flat - G flat] are not diatonic because neither G sharp nor G flat appear in the
major or minor scales on C.
Chords
Chords can exist in isolation but Western music uses them in progression. We
need to understand how they relate to one another. This becomes increasingly important
when our chords are made up of a larger number of notes. We need to distinguish
'close' and 'open' harmonies (as with triads), chords where notes are repeated at
different pitches, and chords where 'extra' notes are included (i.e. 7th, 9th, etc.). As we
increase the number of different notes we find that the same arrangement of notes can
be 'named' in more than one way and there are also many more 'inversions' possible.
Diatonic triads to which a seventh is added are called 'diatonic 7th' chords and are
marked with the chord token.
Teori Musik 2
Page 54
For example, V7a, from which the 'a' is usually omitted, i.e. V7, is a dominant 7th in root
position while V7d is a dominant 7th, fourth inversion.
The 3rd above the root of the dominant chord in minor keys (which is the 7th degree or
leading note of the scale) is always raised a semitone.
Let us finish by summarising the harmonisation in sevenths of the major scale using
numbered chords:
Ima7 IImi7 (or ii7) IIImi7 (or iii7) IVma7 V7
VImi7 (or vi7) VIImi°(
5) (or vii°(
5))
where °, as we saw above, is shorthand for 'diminished'; and the harmonisation in
sevenths of the natural minor scale using numbered chords:
Imi7 (or i7) IImi7(
5) (or ii7(
Vmi7 (or v7)
5))
IIIma7 IVmi7 (or iv7)
VIma7
VII7
Chords in Jazz
Practical chord notation can be much simpler than that used by musical theorists
because far fewer chord patterns are met with in real life than can be imagined by the
fevered mind of an academic.
In jazz, the root of the triad is named with a capital letter, with the addition of 'm'
meaning minor (major being understood), '+' or 'aug' if augmented and 'o' or 'dim' if
diminished. The 3rd and 5th of the triad can be easily deduced so that it is only
necessary to identify additional notes with small numbers.
Thus in Cmaj7 the major 7th has been added to the triad C, E and G, while in C7 it is the
minor 7th that has been added to the triad C, E and G.
Dominant Seventh Chord
One area of confusion when naming or identifying seventh chords is the use of the
term dominant seventh chord. If you look at the table above summarising the degree of
the scale where each type of seventh chord occurs, you will see that the dominant
seventh need not lie only on the Vth degree of the scale, the degree we call the
dominant. Indeed, in the natural minor scale, the dominant seventh chord lies on the
VIIth degree not on the Vth degree.
Teori Musik 2
Page 55
The point to remember is that the dominant seventh chord is any chord formed by
adding a minor seventh to a major triad. Remember too that the chord's note name is
determined by its root note. So the chord G B D F is written G7 because the root note is
G. G B D is a major triad and F is the minor seventh above G. This chord, therefore, is a
dominant seventh chord.
In the key of C major, the notes G B D F form a seventh chord on the Vth degree,
i.e. a dominant seventh on the dominant of the scale. This is also true for the C minor
natural and C minor melodic scales. However, the same notes, G B D F, are a G7 chord
and a dominant seventh on the fourth (IV) degree of the D melodic minor scale.
For completeness, we note finally that the notes G B D F are also a G7 chord and
a dominant seventh on the seventh (VII) degree of the A natural minor scale.
Extended Chords (9th, 11th, 13th)
We discussed extended intervals, or extensions, in an earlier lesson. How might
we notate the addition of extensions to a chord?
The first point to make is that extensions of the tenth and twelve are just thirds and fifths
plus an octave. The extensions of real interest are the ninth, eleventh and thirteenth. The
chords are named for the extension; so, ninth chords, eleventh chords and thirteenth
chords. The extensions are added to seventh chords, the quality and function of which is
preserved. Thus, a dominant chord with an added ninth remains a dominant chord.
For those who find the naming of extended chords rather baffling, remember that it
is assumed that ninths are added to seventh chords to produce ninth chords, that
eleventh and ninths are both added to seventh chords to produce eleventh chords and
that thirteenths, elevenths and ninths are all added to seventh chords to give thirteenth
chords. So if one calls a chord an eleventh it is assumed that the ninth and eleventh are
present and that there is a seventh chord present too.
The quality of the chord is determined by the seventh and the greatest extension
names the chord. Thus, a major thirteenth chord will be a major seventh chord plus a
ninth, an eleventh and a thirteenth, while a dominant ninth is a dominant seventh chord
plus a ninth. However, as you will see mentioned below, thirteenth chords may have an
unvoiced eleventh in order to relieve the otherwise dense harmonic texture.
There are a few practical rules about building extended chords. We list these below.
Teori Musik 2
Page 56
E.
Harmonic Cadence
Cadences
In her article entitled Cadence in Music, Catherine Schmidt-Jones writes about
those things that produce a feeling of cadence:
Harmony:
In most Western and Western-influenced music (including jazz and "world"
musics), harmony is by far the most important signal of cadence. The most fundamental
"rule" of the major-minor harmony system is that music ends on the tonic. A tonal piece
of music will almost certainly end on the tonic, although individual phrases or sections
may end on a different chord (the dominant is a popular choice). But again, you cannot
just throw in a tonic chord and expect it to sound like an ending; the music must "lead up
to" the ending and make it feel inevitable (just as a good story makes the ending feel
inevitable, even if it's a surprise). So the term cadence, in tonal music, usually refers to
the ending chord plus the chord or two immediately before it that led up to it. There are
lots of different terms for the most common tonal cadences; you will find the most
common terms below. Some (but not all) modal musics also use harmony to indicate
cadence.
Melody:
In the major/minor tradition, the melody will normally end on some note of the tonic
chord triad, and a melody ending on the tonic will give a stronger (more final-sounding)
cadence than one ending on the third or fifth of the chord. In some modal musics, the
melody plays the most important role in the cadence. Like a scale, each mode also has a
home note, where the melody is expected to end. A mode often also has a formula that
the melody usually uses to arrive at the ending note. For example, it may be typical of
one mode to go to the final note from the note one whole tone below it; whereas in
another mode the penultimate note may be a minor third above the final note. (Or a
mode may have more than one possible melodic cadence, or its typical cadence may be
more complex.)
Rhythm:
Changes in the rhythm, a break or pause in the rhythm, or a slowing of or pause in
the harmonic rhythm are also often found at a cadence
Teori Musik 2
Page 57
Texture:
Changes in the texture of the music also often accompany a cadence. For
example, the music may momentarily switch from harmony to unison or from
counterpoint to a simpler block-chord homophony
Form:
Since cadences mark off phrases and sections, form and cadence are very closely
connected, and the overall architecture of a piece of music will often indicate where the
next cadence is going to be - every eight measures for a certain type of dance, for
example. (When you listen to a piece of music, you actually expect and listen for these
regularly-spaced cadences, at least subconsciously.)
Harmonic Cadence
The harmonic cadence (English), turnround (jazz), cadencia armónica (Spanish),
cadenza armonica (Italian), cadence harmonique (French) or Schlusskadenz (German)
is one type of cadence.
We have already described how, by writing in a certain way, composers will give a
piece a strong sense of key. When describing triads and chords, we mentioned that
some triads and some chords are more 'stable' than others. 'Unstable' chords and triads
want to resolve to more stable ones. The most 'stable' chord will be the tonic chord and
so any sequence ending with the tonic chord will seem to have reached a 'completion'
while those ending on other chords will seem still to be unresolved.
This is the fundamental difference between the perfect and plagal cadences
(where both end on the tonic chord and are called, collectively, authentic cadences) and
the other two, the interrupted and imperfect, which do not.
Perfect Cadence
also Cadenza perfetta (Italian), Hauptschluss (German), Cadence parfaite (French).
Let us look at the fundamentals of a perfect cadence, also called the full close.
The perfect cadence gets its power from two particular note sequences.
•
the bass line moves from the dominant (fifth) to the tonic (key note) - in C
•
if the bass moves down from dominant to tonic the effect is stronger than
major or C minor, from G to C;
when the bass moves up from dominant to tonic;
Teori Musik 2
Page 58
•
if the bass moves up from dominant to tonic and then drops an octave to the
lower tonic, the effect is strengthened again;
•
the treble line, or at least a treble line, moves from the leading note to the
tonic - in C major or C minor, from B natural to C;
•
the effect is strongest if the 'leading note' to 'tonic' movement is part of the
melody.
To summarize, the perfect cadence is always authentic - it uses a V-»I or V-»i
progression, where both triads are in root position, and the tonic note of the scale is in
the highest part. This is the most decisive cadence and the I (i) chord is felt to be very
conclusive. Its strongest version is in the extended cadence IV-»Ic-»V-»I, which is
commonly used as the final ending in long pieces of music. The perfect cadence can be
seen as analogous to a full-stop.
Writers notate this sequence V-»I or V-»i.
Gambar 79. Perfect Cadence
There is a second sequence of chords that incorporates both the features we
mentioned above and uses a dominant 7th in place of the dominant chord above. These
cadences are called 'leading note (or tone) imperfect authentic cadences'. Adding the
7th makes the dominant, which otherwise is only slightly unstable and therefore only
weakly drawn towards the tonic, more dissonant and in greater need of resolution - in
other words, the dominant 7th chord is more 'unstable' than the dominant chord.
In the key of C major or C minor, the dominant 7th is the minor 7th in the key of G
major, F natural. The F natural wants to resolve to E in C major or to E flat in C minor.
Gambar 80. Perfect Cadence with V7
Teori Musik 2
Page 59
Writers notate this sequence V7-»I.
When the perfect cadence ends a piece of music both the dominant and tonic
chords should be in root position. Note that we don’t say must as some writers of theory
books do. Composers like to break the rules! However the chord sequence is generally
most effective when both chords are in root position.
When the cadence occurs in the middle of a piece, there is no need to use it in its
‘strongest’ form. Either chord may be inverted – even both – whether the dominant has a
7th or not. Notes in both chords can be doubled although it is better not to double the 7th
in the dominant chord. Cadences like these are called ‘imperfect authentic cadences’:
the triads are not in root position (inverted imperfect authentic cadence), and/or the tonic
is not in the highest part (root position imperfect authentic cadence). Note in each case
the final chord is the tonic. When the tonic note is not in the highest part, it slightly
weakens the decisiveness of the conclusion.
When the V is inverted, it weakens the decisiveness and strength of the
progression.
When the I (i) is inverted, it weakens the conclusiveness of the tonic to a much greater
degree. Although the key centre is strongly established by this progression, it does not
provide a proper sense of conclusion because the inversions of the triads are not, in
themselves, stable entities. Such a cadence is often used where a perfect cadence
would seem overly emphatic – it does not check the flow of the music too severely. This
type of cadence is perhaps analogous to a comma.
Plagal Cadence
also Amen cadence, Cadenza plagale (Italian), Plagal Kadenz (German), Cadence
plaine (French).
The plagal or church cadence replaces the dominant, or dominant 7th chord, with a
subdominant chord, that is a chord on the 4th. The effect is weaker than in the perfect
cadence but was popular in music of the sixteenth century. Certainly, both the perfect
and plagal cadences, give a feeling of closure when used at the end of pieces of music.
The absence of the leading note in the subdominant chord makes it weaker than the
dominant chord as a preparation for the tonic chord.
The plagal cadence is usually defined as one whose penult is IV and whose final is
I (or whose penult is iv and whose final is i).
Teori Musik 2
Page 60
Some theorists have widened its definition to include cadences whose penult is on the
subdominant (flat) side of the tonic e.g. ii-»I.
The term is best used to describe cadences in which the penult contains the tonic
degree. The only triads which contain the tonic degree (except for I and i) are IV, iv, VI
and vi. The vi triad is not found as the penult in any effective cadence and so it can be
ignored.
This gives the following endings: IV-»I, iv-»I, iv-»I, IV-»I, VI-»i.
All of these cadences have a penult which can also harmonise the tonic note. This is
why the plagal cadence is sometimes called the Amen cadence because of its use at
the end of hymns.
Gambar 81. Plagal Cadence
Writers notate this sequence IV-»I.
Imperfect Cadence
also Half cadence, Cadenza imperfetta (Italian), Halbschluss (German), unvollkommene
Schluss (German), Cadence imparfaite (French).
Both the perfect and plagal cadence end on the tonic chord. Similarly, the
imperfect authentic cadences also end on tonic chords. The latter should not be
confused with the half, open or imperfect cadence which always ends on the dominant
chord and which can be approached from any other chord, the most common being I, II,
IV or VI.
We give examples of a number of imperfect cadences below.
Teori Musik 2
Page 61
Gambar 82. Imperfect Cadence
Interrupted/Deceptive Cadence
also Cadenza finta (Italian), Cadenza sfuggita (Italian), Cadenza d'inganno (Italian),
Unterbrochener Schluss (German), Trugschluss (German), Cadence interrompue
(French), Cadence trompeuse (French).
The expectation that a dominant chord moves to a tonic chord, thus producing a
perfect cadence, is very strong. For this reason, if a dominant chord is followed by any
other chord, the feeling is one of 'interruption'. So an interrupted cadence is a dominant
chord followed by any chord except the tonic.
Sometimes the term 'deceptive' is used to describe these progressions. The two
terms, 'deceptive' and 'interrupted' are generally considered to be synonymous, but to
make a distinction between them, we give a clearer definition for two similar, but
different, types of cadential progression. These cadences are the same as the authentic,
except that instead of resolving from V to I (i) they resolve to another chord. The effect of
this progression is dependent on the chord to which they resolve.
Deceptive Cadence
When V resolves to vi it sounds like a very effective resolution because vi is able
to function as a genuine tonic - i.e. as a chord of rest and resolution. In this way this
cadence is genuinely deceptive - the ear is expecting something, but it is given
something else which has such a similar function that it is not easily detected - the ear is
fooled.
There are other chords which may be deemed to be deceptive finals - IVb and I7 are
good examples. The IV is usually used in its first inversion and sounds similar to vi.
I7 sounds like I but it has a different function - as a dominant seventh it cannot function
as an effective tonic (in common practice tonal harmony) and seeks resolution to a triad
a fifth below.
Teori Musik 2
Page 62
Due to their similarity to genuine tonics both these chords have been introduced
deceptively. Any other chords which bear similarity to the genuine tonics of I, i and vi,
can be introduced deceptively.
Interrupted Cadence
When the V chord resolves to a chord which bears no relation to a true tonic, the
cadence can be described as interrupted. It sounds like a normal cadence, but it
suddenly changes tack and instead of resolving it moves to a completely different place.
The cadence has been interrupted.
There is no distinction made between the interrupted and deceptive cadences in
conventional music theory; they are simply synonyms and either will be chosen at the
behest of the author.
We give some examples below.
Gambar 83. Interrupted Cadence
The ‘Six-Four’ Cadence
There are clearly a considerable number of possible cadences not included in the
four discussed above. The ‘six-four’ cadence or VI-»IV cadence, is interesting and we
illustrate it below.
Gambar 84. ‘Six-Four’ Cadence
Feminine Endings
Teori Musik 2
Page 63
Cadences are normally found where the second chord is rhythmically stronger
than the first. When the first chord is stronger than the second, the cadence is called
'feminine'. Music from the period of Haydn and Mozart used the progression Ic-»V, i.e.
second inversion tonic chord to dominant chord, so often that one might call it
'characteristic' and is sometimes called a 'half' cadence. It should be noted that this
pattern produces two chords with the same bass note in both chords.
Gambar 85. Feminine Endings
F.
Other Scales
Jazz Scale
The jazz scales can be thought of in the same way as modes: a set of scales
starting on different degrees of an underlying scale that use only the notes of that scale.
Several commentators object to this approach. They argue that jazz scales are just
'altered' scales and the suggestion that the various scales are related to a single Urscale leads to a serious misunderstanding of the way scales are used in jazz and, more
importantly, of how jazz musicians actually think about their use. We are sympathetic to
this view but many other commentators take a different view on this and so, in a spirit of
completeness, we offer the summary below.
The 'standard' Church modes may be thought of as having been derived from an
underlying Ionian or major scale.
In a similar way, jazz scales can be thought of as having been derived from an
ascending melodic minor scale which can be thought of also as a rising major scale but
with the third degree lowered (or flattened). As with the ‘standard’ modes, each scale
starts on a different degree of the ascending melodic minor scale. Unlike the ‘classical’
melodic minor scale, the jazz scales (and modes) remains the same when played up or
down. We met jazz scales earlier when discussing the modes based on the melodic
minor scale but we show them again.
Teori Musik 2
Page 64
Blues
Music of certain genres have developed around certain chordal patterns and
related scales. The blues scale supposedly has its roots in African American music
dating back to the days of slavery, but the exact origins of its modern incarnation are
unknown. Blues music uses the ‘blues scale’ one of which we show below.
Gambar 86. Blues Scales
The blues scale is neither a minor nor a major scale but the internal dissonances
provide the 'colour' that one associates with blues music - the 'blue' notes are the minor
third and the 'flat five'.
You should note the unusual naming of the fourth note of this scale - really a diminished
5th - called the 'flat five'.
In vocal music, the second degree of the scale is often sung somewhere between
an Eb and an E. In instrumental music, various techniques are employed to achieve the
same effect, such as stretching the string while playing an Eb on a stringed instrument,
lipping down an E on a wind instrument, or striking both the Eb and E simultaneously on
a keyboard instrument. The flatted seventh and fifth also are not always sung or played
exactly on the notated pitch.
Variations on the blues scale that include the natural third, fifth, or seventh can be
used as well. Also, note that if the flatted fifth is omitted, the resultant scale is the minor
pentatonic scale which we consider below. The minor pentatonic scale can thus be used
as a substitute for the blues scale, and vice versa.
The beauty of the blues scale is that it can be played over an entire blues
progression with no real avoid notes.
If you try playing lines based on this usage (for example, a C blues scale over a C7
chord) you get instant positive feedback, since almost everything you can do sounds
good.
This unfortunately leads many players to overuse the scale, and to run out of
interesting ideas quickly. One way to introduce added interest when using the blues
scale is to use any special effects at your disposal to vary your sound. This can include
honking and screaming for saxophonists, growling for brass players, or using clusters on
the piano.
Teori Musik 2
Page 65
Many draw attention to characteristic rhythms associated with ‘blues’ music. In
fact, the best-known rhythm, called the ‘eight-note triplet shuffle’, is found also in jazz
and swing. This rhythm is illustrated below.
Gambar 87. Blues style
G.
Altered Chords
Any chord, whether major, minor, augmented or seventh, can be 'modified' or
'altered' thereby changing its character or 'colour'. In particular, with the dominant
seventh which is wholly characterised by three notes, the root, major third and minor
seventh, the fifth, ninth, eleventh and thirteenth may be altered. Raising or lowering by a
semitone the notes of the chord and its extensions may change its dissonance. This
increases the 'tension' of the chord and increases the sense of release as one moves to
a less dissonant chord, for example the tonic. Care must be taken that these altered
chords are correctly numbered and later we look at a few examples to show how this is
done.
In any chord, a note is said to be altered if it differs from that found in a major scale
based on the key note of the chord. By making reference to the major scale, a process
known as parallel major comparison, notes not in the scale may be seen as inflected,
that is they have been 'sharped' (raised) or 'flatted' (lower). By convention, certain notes
are never thought of in this way. The most obvious example is the root itself. If it is
'sharped' or 'flatted' we usually use the new note to establish the new standard major
scale to which all the remaining notes are then compared.
The convention is extended also to the 3rd (important in determining whether a
chord is major or minor) and 7th (because of its role in dominant chord formulae)
degrees of the scale. The 6th degree is excluded unless it appears one octave higher as
a 13th. However, both the 2nd (and its octave equivalent, the 9th) and the 4th (and its
octave equivalent, the 11th) may be 'altered' as can the 5th. Whether, in fact, particular
alterations make harmonic sense often depends on various enharmonic relationships: for
Teori Musik 2
Page 66
example a 'sharped' 2nd degree is enharmonically equivalent to a 'flatted' 3rd which is
we have already discovered is excluded.
The standard way of writing altered seventh chords is to identify the quality of the
chord (i.e.whether major, minor or dominant) and then add the modified note in brackets.
If more than one note is altered both are shown, one above the other in one pair of
brackets, with the widest interval at the top. If the fifth has been raised then the usual
symbol (+ for augmented) appears before the 7.
So:
•
A9 (
 11) represents a ninth chord on A with the root, a major 3rd, a
 11) represents a ninth chord on A
perfect 5th, a flattened 7th, a major ninth and a sharpened 11th; while A
9(
with the root, a major 3rd, a
perfect 5th, a flattened 7th, a major ninth and a sharpened 11th.
•
G7 (
)
represents a seventh chord on G, with the root, major 3rd,
diminished 5th, minor 7th and minor 9th.
The main purpose of alternating chords is to increase the effectiveness in a
progression. We have seen already how a dominant seventh is more effective than a
dominant in a perfect cadence. The examples below show how altered fifths, ninths,
elevenths and thirteens can work - listened to the top note of each chord in each
example.
Lowered Fifth of the Dominant
Raised Fifth of the Dominant
Teori Musik 2
Page 67
Lowered Ninth of the Dominant
Raised Ninth of the Dominant
Raised Eleventh of the Dominant
Lowered Thirteenth of the Dominant
Gambar 88. Altered chords
Neapolitan Sixth
One 'named' altered chord is the Neapolitan Sixth or Phrygian II which is the first
inversion of a major chord on the flattened (sometimes described as 'lowered')
supertonic, the second degree of the major and minor scales used. This is a member of
the family of Neapolitan chords. It is also called Phrygian II
It is called 'sixth' because it is most commonly used in first inversion (or 6/3 position) and
is named symbolically as N6. It is commonly used to reach the dominant chord or the
tonic chord in second inversion when performing a cadence.
In the key of C the flattened (or 'lowered') supertonic is D flat, the major chord
would be D flat, F and A flat. The first inversion has F in the bass. In either form, it is the
most common way of modulating down a semitone. It is very occasionally used in root
Teori Musik 2
Page 68
position, N, or in second inversion, N64, (in either case it is then called a Neapolitan
chord).
When using a Neapolitan sixth in major keys, its fifth should be lowered in order to
create the same chord accidentals as in the minor key.
The examples illustrated below are in D minor and F major.
Gambar 89. Neapolitan Sixth Chords
One striking use of the Neapolitan Sixth chord occurs in the Andante of Schubert's
Symphony in C major. Schumann praised this particular passage in his review published
in Neue Zeitschrift für Musik (1840).
The alternating dominant chords on C, F and D resolve via a Neapolitan Sixth to the
principal theme heard on the oboe in bar 160.
H.
Musical Analysis
Dr. James Sobaskie, at the University of Wisconsin, set out his program entitled A
Strategy for Musical Analysis
Goals
The main goals in most tonal pieces are usually signaled by cadences, and
cadences play critical roles in sectionalizing music. Identify all important cadences, and
determine the relative weight or value of each cadence's corresponding goal. Changes
in dynamics, texture, tonal center, or mode, strong thematic returns, and even elements
of notation may be helpful in determining the individual nature and weight of each goal.
Is there a logical relation or sequence which links them?
Teori Musik 2
Page 69
Means
It is important to understand the means by which a piece's goals are achieved.
Identify the harmonic and contrapuntal elements which are directly involved in creating
the cadences you've identified, the cadential chords, essential chromatic elements (if
any), and any distinctive voice-leading features. Are there any similarities in the ways the
cadences are achieved, or any pattern in the degrees of closure they imply?
Themes
A composition's character, expressiveness, and unity all depend on its thematic
material. Identify all statements of the main theme or themes. Are there any other special
transformations or striking variations of the theme? How are the themes developed? Are
there any special relations among the themes?
Motives
Themes are typically composed of smaller components called motives, and a
motive may consist of a collection of pitches, rhythmic cell, harmonic unit, textural
feature, or some other distinctive musical idea. Identify the smaller components of the
main theme(s) which appear elsewhere, perhaps in the episodes or accompanying
counterpoint. How are the motives varied and developed?
Unique Features
Every good piece boasts something specialÑfeatures which distinguish it, make it
novel, or represent original technical developments. Identify several musical features
which seem particularly unique in the composition. What particularly interests,
impresses, or inspires you about the composition and why?
Form
Most pieces of music may be subdivided into smaller sections, each of which
contributes something special to the whole. Identify the main parts of the composition's
musical form and provide a concise statement which summarizes its function. What does
each section do in the context of the whole piece?
Teori Musik 2
Page 70
Tonal Structure
Tonal compositions typically feature arpeggiations, step progressions, and other
pitch structures which elaborate the tonic triad or other structural harmonies, often
covering considerable spans of music. Identify any large-scale structural elements you
can. How do their components relate to the goals you identified earlier?
Non-Harmonic Notes
Not all notes in a piece of harmony have anything to do with a particular chord or
chord progression. These are called non-harmonic notes, non-chordal notes, nonchord notes or non-essential notes.
Tabel 7. Non-harmonic Notes
Non-Harmonic, Non-Chord, Non-Chordal or Non-Essential Notes
classification
symbol
type
description
passing notes
passing tones (US)
transient notes
nota di passaggio
(Italian s.)
Durchgangsnote
(German s.)
Durchgangston
(German s.)
Übergangsnote
(German s.)
note de passage
(French s.)
p
melodic
notes that pass by a tone
(step) or semitone (half-step)
between chord notes.
neighbouring notes
n
neighboring tones (US)
melodic
notes that leave and return to
the same chord note by a tone
(step) or semitone (half-step).
melodic
a note that is approached by
leap, but resolves to a chord
note by a tone (step) or
semitone (half-step) - the
resolution often in the opposite
direction to the leap.
melodic
the opposite of an
appoggiatura, being
approached by a tone (step) or
semitone (half-step) and
resolving to a chord note by a
leap.
appoggiatura
a
notes de gout (French)
escape note
Teori Musik 2
e
Page 71
s
a note that is held over, that is
approached by itself, and
resolved to the chord note by
harmonic
stepping down a tone (step) or
semitone (half-step) after the
chord is played.
retardation
r
a note that is held over, that is
approached by itself, and
resolved to the chord note by
harmonic
stepping up a tone (step) or
semitone (half-step) after the
chord is played.
anticipation
syncopation
ant
harmonic
pedal note
pedal point
ped
a repeating note or note held
harmonic over while the harmony
changes.
auxiliary note
nota ausiliare (Italian)
Nebennote (German)
note secondaire
(French)
aux
a note that relates to a chord
note but may not be a
neighbouring note.
c.n., n.
gr. or
c.t.
two notes, one that leaves the
chord note by a tone (step) or
semitone (half-step), then
leaps to the next non-harmonic
note by skipping over the chord
note, before resolving to the
same chord note by a tone
(step) or semitone (half-step).
suspension
prolongation
changing notes
neighbor group (US)
changing tones (US)
nota cambiata (Italian
s.)
Wechselnote (German
s.)
Wechselton (German
s.)
note changée (French
s.)
melodic
the chord note arrives before
the chord is played. It is usually
approached by tone (step) or
semitone (half-step).
Note: the term 'appoggiatura' defined above is a description for a non-harmonic
note, and should not be confused with an 'appoggiatura' used as an ornament which is
discussed in lesson 23. The French term notes de gout or the English term 'diminutive
notes' may be applied to the non-harmonic appoggiatura as well as to other ornamental
notes. The term 'syncopation' as a description for a non-harmonic note, should not be
confused with the term 'syncopation' used when discussing rhythm.
Teori Musik 2
Page 72
I.
Harmonic or Overtone Series
Sauveur, following on from work, published in 1673, by two Oxford men, William
Noble and Thomas Pigot, noted that a vibrating string produces sounds corresponding to
several of its harmonics at the same time. The dynamical explanation for this was first
published in 1755 by Daniel Bernouilli (1700-1782). He described how a vibrating string
can sustain a multitude of simple harmonic oscillations. We call this the 'superposition
principle'.
The harmonics are integer multiples of the 'fundamental frequency', also called the
'first harmonic' or 'generator'. So for a string with a fundamental frequency of 440 Hz,
that is fixed at both ends, the harmonics are integral multiples of 440 Hz; i.e. 440 Hz (1
times 440 Hz), 880 Hz (2 times 440 Hz), 1320 Hz (3 times 440 Hz), 1760 Hz (4 times
440 Hz) and so on. The term overtone is reserved for those harmonics that lie above the
'fundamental frequency' (also called the 'fundamental' or 'generator').
To see the harmonics of a violin string visit Standing Waves, Medium Fixed At
Both Ends which demonstrates visually the 1st, 2nd, 3rd, 4th and 5th harmonics
produced by a string on a violin.
The first 15 harmonics (or fundamental plus 14 overtones) are given below, their
frequencies set out in the third column. The fourth column, headed 'normalized', is the
result of dividing the frequency of the harmonic by powers of 2 (transposing the sound
down one octave for each power of 2) so that it lies within a single octave (between 440
Hz and 880 Hz). The nearest note in the chromatic scale on A is given in the fifth column
while the last column, headed %, shows how close the normalized frequency is to the
frequency of the nearest equal-tempered note diatonic to A.
If you wish to investigate higher harmonics please refer to our interval calculator.
We can extract a complete diatonic scale on A from the first 15 harmonics. The D is
somewhat sharp while the F#, in particular, is very flat. It would not be impractical to tune
a stringed instrument to play diatonic melodies in the key of A using this scale.
You will see that the perfect fifth appears in this harmonic series as the third
harmonic. The ratio of the frequencies of the third and second harmonic is (1320:880)
which is (3:2). However the fourth, the note D, which should have a frequency in ratio to
A of (4:3) (1.33333), actually comes out as 1.375. A more serious problem is the
absence of an interval one could call a tone or a semitone. The Greeks defined their
tone as the difference between a perfect fifth and a perfect fourth, but the fourth is not
perfect in this scale. There is no way of deriving chromatic scales either by starting from
A or by starting from another note, say, the perfect fifth, E.
Teori Musik 2
Page 73
We notate below the harmonic or overtone series based on C. The overtones
shown in brackets are only approximately equivalent to the equal tempered scale notes
on the staff. The overtone count (1, 2, 3, etc.) are one more than the harmonic count in
the table above (1, 2, 3, etc.). So the first overtone is the second harmonic. Some
commentators call the fundamental (or first harmonic) the 'zeroth' overtone.
Gambar 90. Overtone Series
Inharmonicity
Before leaving the discussion of harmonics, it would be useful to point out that not
all systems produce their harmonics as neatly as, say, the strings of a violin. Some
instruments produce harmonics that are not integer multiples of the fundamental. The
term inharmonicity is used in music for the degree to which the frequencies of the
overtones of a fundamental differ from whole number multiples of the fundamental's
frequency. These inharmonic overtones are often distinguished from harmonic
overtones, which are all whole number multiples, by calling them partials, though partial
may also be used to refer to both. Since the harmonics contribute to the sense of sounds
as pitched or unpitched, the more inharmonic the content of a sound the less definite it
becomes in pitch. Many percussion instruments such as cymbals, tam-tams, and
chimes, create complex and inharmonic sounds. However, strings too, become more
inharmonic the shorter and thicker they are, which is an important consideration for
piano tuners, especially when setting the thick strings of the bass register. Strings on a
piano are generally thicker and therefore shorter than those on harpsichords in order, as
we learn from the harpsichord and piano maker Johann Andreas Stein writing in 1769, to
accommodate "the blow of the hammer."
Inharmonicity is found, also, in the instruments of the gamelan, particularly in the
overtones of the free vibrations of the gongs, bells and strings. The inharmonic partials
of the instruments require that the octave be stretched by a ratio of 2.02/1, or 17 cents
Teori Musik 2
Page 74
(100ths of a semitone in 12-tone equal temperament) per octave. The stretched octave
sounds more harmonious when tuned so frequencies of vibration coincide, rather than
when tuned exactly.
J. Pythagorean Series
Before going any further we should clarify the distinction between tuning and
temperament.
We quote below from Pierre Lewis's article Understanding Temperaments. A
tuning is laid out with nothing but pure intervals, leaving the Pythagorean or
ditonic comma to fall as it must.
A temperament involves deliberately mistuning some intervals to obtain a
distribution of the comma that will lead to a more useful result in a given context.
Solutions can be grouped into three main classes:
1.
tunings (Pythagorean, just intonation)
2.
regular temperaments where all fifths but the wolf fifth are tempered
the same way; note: regular meantone implies that all major thirds are
identical
3.
irregular temperaments where the quality of the fifths around the circle
changes, generally so as to make the more common keys more
consonant
Temperaments are further classified as:
o
circulating or closed if they allow unlimited modulation, i.e. enharmonics
are usable (equal temperament, most irregular temperaments)
o
non-circulating or open otherwise (tunings, most regular temperaments)
The choice of a particular solution depends on many factors such as
o
o
o
the needs of the music (harmonic vs melodic, modulations)
the tastes of the musicians and listeners
the instrument to be tuned (organ vs harpsichord - tuning the former is
much more work so one needs a more convenient solution),
o
aesthetic (Gothic's tense thirds and pure fifths vs the stable, pure thirds of
the Renaissance and Baroque) and theoretical considerations, and ease of
tuning (equal temperament is one of the more difficult)
Teori Musik 2
Page 75
We should first ask whether the perfect fifth, one of the three intervals (octave,
fifth, and fourth) which have been considered to be consonant throughout history by
essentially all cultures, form a logical base for building a chromatic scale; for example,
one starting from the note C?
Gambar 91. Pythagorean Series
We illustrate above a sequence of fifths starting from F, two octaves below middle
C. The image is taken from Tuning Systems by Catherine Schmidt-Jones.
A sequence starting from C would progress as follows:
C G D A E B F# C# G# D# A# F C, the first 7 members providing us with the diatonic
scale of G major (G A B C D E F# G)
If one applies the ratio (3:2) twelve times, and normalizes the result by dividing by
powers of 2, the result is sharp of an octave by a ratio called the Pythagorean or
76iatonic comma (524288:531441). We find also that if we use these frequencies to
construct a scale, the major third (G B) and the octave (G G, the latter generated from
the twelfth power of (3/2)) are both too large.
Tabel 8. Pythagorean Intervals
Pythagorean intervals and their derivations (also called by modern
theorists, the 3-limit system because all ratios are powers only of 2 and/or
3)
Interval
Ratio
Derivation
Cents
Unison
(1:1)
Unison 1:1
0.000
Minor Second
(256:243) Octave - Major Seventh 90.225
Major Second
(9:8)
(3:2)2
203.910
Minor Third
(32:27)
Octave - Major Third
294.135
4
Major Third
(81:64)
(3:2)
407.820
Fourth
(4:3)
Octave - Fifth
498.045
Teori Musik 2
Page 76
Augmented Fourth (729:512) (3:2)6
611.730
1
Fifth
(3:2)
(3:2)
701.955
Minor Sixth
(128:81)
Octave - Major Third
792.180
3
Major Sixth
(27:16)
(3:2)
905.865
Minor Seventh
(16:9)
Octave - Major Second
996.090
5
Major Seventh
(243:128) (3:2)
1109.775
Octave
(2:1)
1200.000
Octave (2:1)
A number of proposals have been considered in order to 'improve' the Pythagorean
scale.
For instance, the Greek major tone, represented by the ratio (9:8) could be married
to the semitone, represented by the ratio (256:243) and a scale of five whole tones plus
two semitones could be formed. Now the octave is exact but the thirds are still sharp
and, because the sharps and flats are not enharmonic, there are problems when
changing key.
Another solution employed a pure fourth (4:3) and set the octave as a pure fourth
above a perfect fifth, before using the ratio (9:8) to fill in the remaining tones. The
remaining semitones were chosen on the basis of taste. Unfortunately, the third is still
sharp!
A further solution was to slightly narrow the fifth in every or in only some of the
notes arising from the circle of fifths, so absorbing the comma of Pythagoras. This kind
of solution made it possible to move from one key to any other and formed the basis of
the well-tempered system promoted in 1722 and again in 1724 when Bach published his
"Well-Tempered Clavier". The series of keyboard preludes and fugues was written as
much to show the characteristic colour of different keys as to demonstrate that, using
this tuning system, a composer was no longer prevented from exploring every minor and
major key.
K. Meantone Scale
The first mention of temperament is found in 1496 in the treatise Practica musica
by the Italian theorist Franchino Gafori, who stated that organists flatten fifths by a small,
indefinite amount. This practice was formalised in what is called the mesotonic or
meantone (also written mean-tone) scale. It was always particularly favoured by
organists and explains why organ music from the period the early sixteenth to the
Teori Musik 2
Page 77
nineteenth century was written in a relatively small number of keys, those that this scale
favoured. Arnolt Schlick's Spiegel der Orgelmacher und Organisten (1511) described
both the practice of and formulae for mean-tone tuning which makes it clear that it was
already in use. Pietro Aron produced a more thorough analysis in Toscanello in Musica
(1523), which sufficed for all practical purposes. The earliest complete description was
published by Francisco de Salinas in De Musica libri septem (1577).
How was it set?
Based on C, the method relied on using the first five notes from the circle of fifths from C,
namely C, G, D, A, E and setting a pure third between C-E by narrowing the fifths by a
small amount - from a ratio of (3:2) to a ratio of (2.99:2). D, the note between C and E
was set so that the ratio between D and C was identical to that between E and D, so
placing D in the mean position between C and E, hence the scale's name. What
happened after this to complete the chromatic scale introduced a number of variants
which only the more studious of our readers are likely to pursue. Suffice it to point out
that the results generally work well in the keys C, G, D, F and B flat but outside these
serious problems arise and composers writing for this system avoided keys more distant
from C.
Pietro Aron's description of meantone tuning is the best known. All but one of the fifths
are flattened from the pure (3:2) ratio by 1/4 of the syntonic comma. The remaining fifth
ends up being sharp by 1 3/4 of the syntonic comma (the wolf). The syntonic comma is
the ratio (9:8) divided by (10:9), which is the ratio between a pure C-D interval and a
pure D-E interval. In a pure harmonic series starting at CCC (CCC is English organ
nomenclature: bottom C on a 16' voice), middle C is 8 times the fundamental, middle D
is 9 times the fundamental, and middle E is 10 times the fundamental. The result of this
procedure is a scale with 8 pure major 3rds and 4 diminished 4ths. But there were other
meantone procedures known in the 16th and 17th centuries, especially by 2/7th comma,
in which the minor 3rds are pure and the major 3rds beat, and 1/3rd comma. In the the
mid-eighteenth century, several instrument-makers and theoreticians used a 1/6th
comma meantone temperament, particularly Gottfried Silbermann and Vallotti. A bizarre
fact is that equal temperament is really meantone by 1/12th comma, that is every fifth is
narrowed by 1/12 of the syntonic comma and the interval between C - D and between D
- E are equal. So, all the modern pianos you have ever heard are in one of the many
types of meantone temperament!
Teori Musik 2
Page 78
L. Equal Temperament
It must have been a brave man who first pointed out to a world wedded to
centuries of mean, natural and Pythagorean tuning, that a scale could be formed using a
universal ratio for a semitone such that successive application of this ratio generated the
notes of a chromatic scale before completing the octave with its harmonic ratio of (2:1),
and that using such a system one might play in tune in any key. This universal ratio is
the twelfth root of 2.
This tuning system, called 12EDO (Equal Divisions of the Octave), 12-tET by
modern tuning theorists or Standard European 1/12 Diatonic Comma Equal
Temperament by others, found favour amongst the lutenists of the sixteenth century
who, having tuned the instrument's strings to different notes, could fret each at an
identical point from the nut to produce parallel equal-tempered scales something that
would be impossible using any other temperament. Unfortunately, as Nicola Vicentino,
the inventor of the archicembalo with six rows of keys that enabled six different versions
of any scale to be performed complete with temperamental adjustment, observed, this
produced horrible clashes between the lute tuned to an equal-tempered scale performed
with a keyboard tuned using mean-tone temperament.
Evidence of the use of equal temperament in consort singing comes in the
madrigal O voi che sospirate a miglior note by Luca Marenzio (c.1553-1599). The
composer modulates completely around the circle of fifths within a single phrase, using
enharmonic spellings within single chords (for instance, simultaneous C# and Db), which
would be impossible to sing unless some approximation of equal temperament is being
observed.
At the time, keyboard players found the equal-tempered scale more 'sour' than the
other systems in the five keys commonly used, and because most composers worked
only in a limited number of keys the benefits to be had from the equal-tempered system
in more distant keys were not at all obvious. This probably helped delay its acceptance
until such time as enough 'new' ears had become used to it, or enough composers had
explored more distant keys with it in mind. In England, it was not until 1842 that the first
organ, that of St. Nicholas in Newcastle-upon-Tyne, was tuned to equal temperament.
It is still surprising that the system may have been known in Europe as early as the
fifteenth century (some have suggested that equal temperament was first explained by
Chu Tsai-yü in a paper entitled A New Account of the Science of the Pitch Pipes
published in 1584). However, Henricus Grammateus had already drawn up a fairly close
approximation in 1518, and Zarlino corrected Vincenzo Galilei's plan for a twelve-
Teori Musik 2
Page 79
stringed equal-tempered lute (Galilei had invoked Aristoxenus as his inspiration in this
project). Even though the mathematician and music theorist Mersenne produced a
correct and systematic description in 1635, equal temperament was not adopted until
150 years later in Germany and Austria, while Britain and France delayed for over two
centuries. As late as 1879, William Pole was writing in his book The Philosophy of Music,
"The modern practice of tuning all organs to equal temperament has been a fearful
detriment to their quality of tone. Under the old tuning, an organ made harmonious and
attractive music. Now, the harsh 3rds give it a cacophonous and repulsive effect." In
1940, another sceptic, L. S. Lloyd, wrote an article entitled The Myth of equal
Temperament in which he described the improbability of singers, or players of any
instrument with variable intonation of being able to sing or play in true equal
temperament; or, a keyboard instrument actually being tuned to theoretically correct
equal temperament. It is worth remembering that Vincenzo Galilei (1520–1591), an
Italian lutenist, composer, and music theorist, and the father of the famous astronomer
and physicist Galileo, observed that instrumentals and singers failed generally to
observed any theoretical tuning or temperament. As Barolsky writes "all intervals, Galilei
argued, are natural, not simply those mathematically determined. In performance, a fifth
that is a bit off the (3:2) ratio is just as useful as one that is exactly on the mark."
It is interesting to read what the German composer, violinist and conductor Louis Spohr
(1784–1859), writing in his Violinschule of 1832, has to say on the subject of equal
temperament.
M. Just Intonation
Barbour writes, in Tuning and Temperament, "it is significant that the great music
theorists ... presented just intonation as the theoretical basis of the scale, but
temperament as a necessity". Strict adherence to just intonation could, under certain
circumstances, lead to pitch descent by tuning, so-called commatic drift.
Commatic drift is defined by Paul Erlich (and quoted in Joe Monzo's Tonalsoft
Encyclopedia of Microtonal Music Theory) as "an immediate change in the pitch of a
note, as the note is held or repeated from one harmony into another". He continues, "a
drift is an overall pitch change of the entire scale. its effect on the pitch of any note
doesn't become evident until an entire "comma pump" chord progression has been
traversed. For example, in the classic problem of rendering the I-»vi-»ii-»V-»I
progression in strict Just Intonation, one either has a shift (the 2nd scale degree shifts
Teori Musik 2
Page 80
from 10/9 in the ii chord to 9/8 in the V chord) and no drift, or a drift (the final I is lower by
80:81 than the initial I) and no shifts."
However, despite many examples of where, were the intervals defined by Just
Intonation strictly to be adhered to, there would be a drift in pitch, musicians actually
'correct the pitch' by tempering various intervals. In fact, it is the pitch of individual notes
that vary ever so slightly through chordal progressions, the net effect of which is to hold
the overall pitch reasonably constant.
The natural or harmonic scale is being explored again in the twentieth century
through the work of Harry Partch, Lou Harrison and others who, with the advantages of
modern technology, have sought to explore musical systems that were abandoned more
for their practical limitations than for any lack of aesthetic interest. One has only to
consider the complexity of a piano built to perform music based on a microtonal system,
or remind ourselves of Nicola Vicentino's archicembalo, instruments that have been
made and played, to appreciate that the equal-tempered scale brings with it certain
advantages.
Following on the ideas of Theodor Adorno, the American composer Ben Johnston
believes that music has the power to influence and even control social trends. Johnston
believes that an equal tempered tuning system based on irrational intervals contributes
to the hectic hyper-activity of modern life. The wildly beating sonorities of equal
temperament are thought to resemble (and perhaps foment) the fast-paced,
unmeditative current of present-day Western existence. Many just intervals lack the
sharp vibrancy of irrational intervals (and higher-order rational intervals) and thus are
sometimes felt to convey an affect of stasis and meditative calm. Indeed, cultures whose
tuning systems draw heavily on purely tuned intervals (e.g., North Indian classical music)
tend to value meditative social attitudes more greatly than in the West.
N. Pythagorean
Strictly, not a temperament but a tuning because natural intervals are not adjusted
but allowed to fall where they may, it dates back to 500 BC. This simple scale creates
eleven pure fifths around the circle, leaving the entire Pythagorean comma between G#
and Eb There are four pure major thirds at B-D#, F#-A#, Db-F, and Ab-C, but these are
not particularly useful. The remainder are quite harsh.
Teori Musik 2
Page 81
O. Timbre/Tone Colour
All musical instrument have acoustical properties determined by their form and
material of construction. Musical instruments require intervention from an actuator (or
performer) to provide the energy that will initiate the production of sound. Sound is a
form of mechanical energy that requires a medium through which to propagate or travel.
A sound travels from a source, through a medium to a detector. For us the detector is
the human ear. If the sound is to be considered musical with a specific pitch or tone
quality, rather than just 'noise', the mechanical energy has to radiate from the instrument
as regular disturbances, what we call 'periodic' vibrations. The vibrator producing
fluctuations, oscillations, pulsations or undulations (these terms are all equivalent) will be
different on different instruments and the initiation and resonance may arise from two
separate processes. We say that the sound producing system has two parts - the
initiator and the resonator.
Examples of initiators:
1.
String - violin, guitar, piano, psaltry, harp
2.
Reed - clarinet, oboe, bassoon, English horn.
3.
Lips - trumpet, trombone, French horn, tuba.
4.
Membrane - drum, tambourine
5.
Wood - wood block, xylophone.
6.
Metal - bells, cymbals.
7.
Electronic instruments - speakers that can produce vibrations
Examples of resonators:
1.
Wooden box which may be hollow or solid - violin, guitar, piano (sounding
board)
2.
Tubing - (brass, silver, wood, pipe-like) - trumpet, trombone, French, horn,
3.
Chest, oral, nasal and throat cavities - human voice.
4.
Electronic instruments - amplifier, tuned circuits.
flugel horn, tuba, trombone.
The character of the sound each instrument produces is, therefore, partly due to
vibrations associated with the process of initiation and partly due to the characteristic
vibrations that are generated by the resonator, initially sustained but usually decaying
once energy is no longer supplied to the system. If, on a stringed instrument, the bow is
Teori Musik 2
Page 82
continuously drawn across a string, the instrument is described as being in continuouscontrol mode; i.e. onset - sustain. If, however, on the same instrument, a string is
plucked with a finger, the instrument is then said to be in envelope-based mode; i.e.
onset - sustain - decay. In general and when the process of initiation is mechanical and
occurs over a relatively short time, short relative to the persistance of the resonance
response that follows, a note has a clear starting or 'onset' sound (arising from the
initiator) which is distinguishable from the sound that follows (that arising from the
resonator). For example, the 'tonguing' sound that begins notes produced on windinstruments is distinguishable from the sustained resonance associated with the
remainder of the note. The percussive initiation of a note produced on a piano, the
sound of the hammer striking the string, is distinguishable from the sound that rings on
should you keep the piano key depressed for any length of time. The mechanical
processes involved in sound production on musical instruments include plucking or
bowing (on violin, viola, cello string bass, harpsichord), blowing (on clarinet, oboe,
trumpet, trombone, recorder, voice) or striking (on drums, piano, clavichord, xylophone).
It has been found that if the onset is removed from recordings of sounding musical
instruments it becomes more difficult to distinguish one from another. External factors,
too, can influence 'timbre' - for example, if an instrument moves in a room relative to the
listener.
To summarise, timbre is the spectrotemporal pattern of a generated sound
indicating the way the energy in the system is distributed between different harmonics or
frequency components and the way that distribution is changing over time.
The instruments of the orchestra, viewed as mechanical systems, can be classified in
the following manner:
1.
Strings
a.
Bowed: Violin, viola, cello, double bass, bowed psaltry
b.
Plucked: Violin, viola, cello, double bass, lute, harp, citern, sitar,
shamisen, mandolin, harpsichord
2.
c.
Hammered: Zither, dulcimer, plucked psaltry
d.
Struck: Piano, clavichord
Woodwinds
Teori Musik 2
a.
Blown Flute: Transverse flute, recorder
b.
Blown Single reeds: Clarinet, bass clarinet, saxophone
Page 83
c.
3.
Brass
a.
4.
Blown Double reeds: Oboe, bassoon, contra bassoon, crumhorn
Blown: Cornet, trumpet, French horn, trombone, Flugel horn, tuba
Percussion
a.
Struck Tuned
1) Bells, chimes
2) Glockenspiel
3) Xylophone, vibraphone, marimba
4) Timpani
b.
Struck Untuned
1) Bass and snare drums
2) Cymbals
3) Tam-tam
4) Gong
5) Claves, maracas, bongos, tambourine, whip, triangle,
woodblock, bells
Teori Musik 2
Page 84
PENDALAMAN MATERI
Petunjuk:
•
Pada bab ini, mahasiswa diberi kesempatan untuk melakukan browsing tentang
teori musik, yang dapat diakses antara lain, melalui music theory online.
•
Topik-topik di bawah ini dibuat sebagai laporan untuk tugas akhir mata kuliah Teori
Musik Dasar Lanjut :
1.
Other-lets
2.
Interval Calculator
3.
Triads & chords
4.
Diatonic Triads
5.
Chords
6.
Chords in Jazz
7.
Broken & Spread Chords
8.
Chords: Structure vs. Function
9.
Dominant Seventh Chord
10. Naming Seventh Chords
11. Slash Chords
12. Extended Chords (9th, 11th, 13th)
13. Harmonic Cadence
Teori Musik 2
Page 85
DAFTAR PUSTAKA
Anonim. (1958). Rudiments and Theory of Music. Emgland : The Associated Board of
The Roya; School of Music.
Baker, Th. (1923). Dictionary of Musical Terms. USA : G. Schirmer, Inc.
Culver, Charles A. (1969). Musical Accoustic. USA : Mc. Graw-Hill Bool Company.
Dolmetsch Online-Musical Theory Online. 2009. Last modified: 12 Jan 2009.
©.Dolmetsch Musical Instruments. http://www.dolmetsch.com/theoryintro.htm
Heussenstamm, George. (1987). The Norton Manual of Music Notation. New York :
W.W. Norton & Company, Inc.
Hindemith, Paul. (1974). Elementary Training for Musicians. New York : B. Schott’s
Sohne, Mainz – Schott Music Corporation.
Jones, George Thaddeus. (1974). Music Theory. New York : Harper & Row Publishers.
Kheng, Loh Phaik. (1991). A Handbook of Music Theory. Malaysia : Penerbit Muzikal.
Laksanadjaja, J.K. (1977). Kamus Musik Kecil. Bandung : Pernerbit Alumni.
Lovelock, William. (1980). A Student’s Dictionary of Music. London : Bell & Hyman
Limited.
______________ . (1933). Ornaments and Abbreviations for Examination Candidates.
Norwich : William Elkin Music Services.
Teori Musik 2
Page 86

Similar documents

×

Report this document